
(12) United States Patent
Ling et al.

USOO8332504B2

US 8,332,504 B2
Dec. 11, 2012

(10) Patent No.:
(45) Date of Patent:

(54) METHOD FOR TESTING CONNECTIVITY
OF SOFTWARE APPLICATIONS HOSTED ON
NETWORKED COMPUTERS

(75) Inventors: Calvin Ling, Bellevue, WA (US);
George K. Wu, Bellevue, WA (US);
Michael J. McNicholl, Renton, WA
(US): Seth J. Thorup, Sandy, UT (US)

(73) Assignee: The Boeing Company, Chicago, IL
(US)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 1625 days.

(21) Appl. No.: 11/645,391

(22) Filed: Dec. 26, 2006

(65) Prior Publication Data

US 2008/O155513 A1 Jun. 26, 2008

(51) Int. Cl.
G06F 5/73
G06F 9/44 (2006.01)
G06F 9/45 (2006.01)

(52) U.S. Cl. 709/224; 709/218; 717/135; 703/22
(58) Field of Classification Search 709/217 229;

717/135; 703/6-16
See application file for complete search history.

(2006.01)

MODULE HOSTED
FUNCTION XML CONFIG.

FILES FROM ICD

END SYSTEM EX,
CONFIG. FIE FROM ICD

SOURCE CODE, MAKE
FILES, BUILD DIRECTORIES

FOR GPM, RU, RDC

EXECUTABLE FILESTO
BELOADED TO

GPM, LRU & RDC

AFDX SWCHTEX
FILE FROM CD

BINARY FILES TO BE
LOADED INTO END SYSTEM
FOR GPN, RU RDC

(56) References Cited

U.S. PATENT DOCUMENTS

7.406,050 B2 * 7/2008 Calluaud et al. 370/250
7,636,653 B1* 12/2009 Chan et al. TO3/14
7,693.986 B2 * 4/2010 Berbiguier et al. TO9,224

2004/0194022 A1* 9, 2004 Cleraux et al. 715,513
2005/0220029 A1 10, 2005 Calluaud et al.
2006/0156268 A1* 7/2006 Wen et al. T16, 18
2006/0224375 A1 * 10, 2006 Barnett et al. 703/22

* cited by examiner

Primary Examiner — Yasin Barqadle
(74) Attorney, Agent, or Firm — Ostrager Chong Flaherty &
Broitman P.C.

(57) ABSTRACT

A method for verifying the connectivity of software applica
tions hosted on networked computers. The connectivity of
hosted function applications to be loaded into networked
computers is verified and validated using quasi-hosted func
tion applications that simulate the communications functions
(i.e., connectivity) of those hosted function applications. The
quasi-hosted function applications are run on the same hard
ware that the real hosted function applications will be run on.
Furthermore, the connectivity of a real hosted function appli
cation loaded into one computer can be verified and validated
by simulating communications of that real hosted function
application with a multiplicity of quasi-hosted function appli
cations running on the networked computers.

17 Claims, 2 Drawing Sheets

KERNE CONFIG, XML
FE & CORE OS

FROM CD

BINARY FILES TO BE
OADED INTO

AFOX SWITCHES

US 8,332,504 B2 Sheet 1 of 2 Dec. 11, 2012 U.S. Patent

ETILJ ET8WI?OBXE

US 8,332,504 B2
1.

METHOD FOR TESTING CONNECTIVITY
OF SOFTWARE APPLICATIONS HOSTED ON

NETWORKED COMPUTERS

TECHNICAL FIELD

The present disclosure relates generally to methods for
Verifying the connectivity of Software applications hosted on
networked computers. In particular, this disclosure relates to
methods for verifying and validating the interface configura
tions of Software applications hosted on networked comput
ers of an avionics system.

BACKGROUND

Avionics systems typically have a variety of components
that provide data to other components of the aircraft or
exchange data among one or more other components of the
aircraft. An avionics system typically includes multiple gen
eral purpose modules(GPMs), which are computers for gen
eral computing needs. Other computers are special purpose
computers, such as line replaceable units (LRUs) and remote
data concentrators (RDCs). For example, a variety of external
sensors may gather information (e.g., speed, direction, exter
nal temperature, and the like) that is routed via an avionics
network or databus to one or more aircraft components. The
data from multiple sensors may be collected by a strategically
located RDC and then sent to other avionics system compo
nents via the avionics network or databus. An RDC or LRU
may also be used to send control signals to actuators and
valves.

Components of an avionics system can be connected via an
Ethernet type network through network switches. In an avi
onics network environment, the Ethernet network has various
components (e.g., LRUs, RDCs) that form a publisher and
subscriber relationship. Each network publisher can send
packets in digital form, at controlled rates, to one or more
subscribers. When a switch receives the packets, the switch
determines the destination equipment and routes the packets
to Such equipment.
ARINC 664 Part 7 sets forth an aeronautical standard that

defines a dual redundant avionics network for use in an air
craft environment and more specifically describes an Avion
ics Full Duplex (AFDX) switched Ethernet network. In a
switched full-duplex Ethernet type network, the term “full
duplex refers to sending and receiving packets at the same
time on the same link, and the term "switched’ refers to the
packets being Switched in Switches on appropriate outputs.
The AFDX network uses multiple switches and redundant
paths to route data, point-to-point or point-to-multipoint
across the switches. AFDX Switches use store-and-forward
technology. The AFDX network also includes end systems,
which behave like conventional network interface cards that
connect system components like LRUs, RDCs, and GPMs to
the network media

Aircraft Subsystems can communicate with each other over
an AFDX network using virtual links. Each virtual link
defines a particular routing of information in the AFDX net
work. In particular, a virtual link defines the data source and
its destinations. Each virtual link can have a defined band
width set by its transmission frequency and its packets maxi
mum payload size. An AFDX end system may implement a
number of virtual links for transmission of data and also
defines other virtual links as a receiver. Multiple aircraft
Subsystems can be grouped physically and connected to the
AFDX network by end systems.

10

15

25

30

35

40

45

50

55

60

65

2
The Boeing 787 program has vendors who supply hard

ware and tools (platform Suppliers) and Suppliers who pro
vide software applications (hosted function Suppliers) for its
avionics system comprising a multiplicity of subsystems (i.e.,
computers) connected by a network. Avionics interfaces of
the types previously described can also be used to instrument
all of the parameters of the various Subsystems and electroni
cally collect this data for presentation to the flight crew for use
in flying the aircraft. To facilitate data transmission across the
network, the various Subsystems must be properly config
ured. These Subsystems have all their configuration param
eters and data stored inside an Interface Configuration Data
base (ICD) in XML file format. These XML files define how
each component of the avionics system is connected and
configured, how the data (and what kind of data) flow from
one end of the system to another, how various devices in the
system interact with each other, and the transmission and
receiving rates for each message going through the network,
etc.

More specifically, the ICD contains all the data and param
eters (several hundred thousand) for configuration of airplane
avionics systems. These data and parameters define how com
ponents on the airplane communicate with each other (pro
tocol), dictate rateffrequency at which they initiate and
respond to communication protocols, and allocate in which
computing node a particular application program resides, to
name just a few. Since each node hosts multiple applications,
the ICD also stipulates where in a computer node's memory
space each application should stay. All these data and param
eters are entered into the ICD manually by engineers.
The system platform suppliers and hosted function suppli

ers depend upon the aforementioned ICD parameters and data
for configuration so that all hardware and Software compo
nents can work and function together Smoothly when all of
them bring their modules to the airplane for Boeing to con
duct final system integration and assembly. However, there
has been no easy and reliable way to verify and validate that
those hundreds of thousands of parameters and data in the
ICD were entered correctly or that their complicated depen
dency structures were defined accurately. Traditionally this
Verification and validation process has been carried out manu
ally, which is extremely laborintensive and error prone. Many
engineers, with pencil and paper, can spend days to ensure
that what they have entered into the ICD is correct and accu
rate. When any changes or modifications occur in the ICD,
which happens frequently during the initial engineering stage
of the airplane development, they can cause a ripple effect
across the system. Very often the engineers are forced to make
profound changes in both the component and system level
configuration files and the laborious manual checking process
must be repeated to mitigate any undesirable ramifications.

Furthermore, when one hosted function Supplier comes in
for system testing and integration, its Software application
must be running in a functioning avionics system where the
hosted function can check its application behavior, perfor
mance and characteristics. Currently the avionics system for
the Boeing 787 airplane may have 60 plus hosted function
applications. When the first couple of hosted function ven
dors show up for system testing and integration, there will be
no running avionics system because to drive data flow as per
ICD configuration requires hosted function applications. This
presents a classic "chicken or the egg dilemma to verify
and validate the ICD configuration requires integrated and
validated hosted function applications, but to integrate and
validate the hosted function applications demands a validated
ICD configuration.

US 8,332,504 B2
3

There is a need for an automated method for verifying and
validating configuration parameters and data of hosted func
tion applications to be loaded into networked computers at the
system level. There is a further need for a system that simu
lates the communications functions of hosted function appli
cations to be run on a not yet fully functional networked
computer system, for the purpose of enabling a hosted func
tion Supplier to plug in its application Software for system
level testing and integration.

SUMMARY

The present disclosure is directed to systems and methods
for verifying the connectivity of software applications hosted
on networked computers. In accordance with one embodi
ment, the connectivity of hosted function applications to be
loaded into networked computers is verified and validated
using quasi-hosted function applications that simulate the
communications functions (i.e., connectivity) of those hosted
function applications. These quasi-hosted function applica
tions are run on the same hardware on which the real hosted
function applications will be running. In accordance with
another embodiment, the connectivity of a real hosted func
tion application loaded into one computer networked to other
computers is verified and validated by simulating communi
cations of that real hosted function application with a multi
plicity of quasi-hosted function applications running on other
computers and, if applicable, on the same computer (if the
network design calls for more than one hosted function appli
cation to be run on that computer) of the network. In accor
dance with one implementation, the quasi-hosted function
applications are generated automatically by a process called
“Static Simulation Automated Code Generation' that uses
XML-based configuration files for hosted function applica
tions as inputs.
One aspect is a method for testing the connectivity of

Software applications hosted on networked computers, com
prising the following steps: using configuration files for
respective desired hosted function applications to generate
quasi-hosted function applications that simulate the commu
nications functions of respective ones of the desired hosted
function applications, each configuration file containing con
figuration parameters and data; building executable files for
the quasi-hosted function applications and loading the
executable files into networked computers; causing one or
more of the quasi-hosted function applications to exchange
data blocks among quasi-hosted function applications via the
network; and acquiring and analyzing data representing the
connectivity of the quasi-hosted function applications.

Another aspect is a method for testing the connectivity of a
Software application hosted on a networked computer, com
prising the following steps: using configuration files for
respective hosted function applications to generate quasi
hosted function applications that simulate the communica
tions functions of respective ones of the hosted function
applications, each configuration file containing configuration
parameters and data; building executable files for the quasi
hosted function applications and loading the executable files
into networked computers; loading a hosted function appli
cation into one of the networked computers; causing the
hosted function application to send data blocks to one or more
quasi-hosted function applications via the network and/or
receive data blocks from one or more quasi-hosted function
applications; and acquiring and analyzing data representing
the connectivity of the hosted function application.
A further aspect is a system comprising a multiplicity of

computers connected by a network, each computer hosting

10

15

25

30

35

40

45

50

55

60

65

4
one or more executable quasi-hosted function applications
that simulate the communications functions of respective
desired hosted function applications, wherein each of the
quasi-hosted function applications simulates a sender and/or
a receiver of a respective desired hosted function application,
and comprises an instrumentation algorithm that is used to
log any one of the following: mismatch of data block size,
mismatch of rates/frequencies or total miss of message data
blocks, and network, Switches, and end systems jitters in
various real avionics operating modes.

Other aspects of the invention are disclosed and claimed
below.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram showing components of a known
avionics system.

FIG. 2 is a flowchart depicting a process for building
executable files for an avionics system having distributed
components.

FIG. 3 is a flowchart depicting a process for building
executable files for an avionics system having distributed
components, which executable files represent quasi-hosted
function applications that simulate the communications func
tions (i.e., connectivity) of real hosted function applications.

Reference will now be made to the drawings in which
similar elements in different drawings bear the same refer
ence numerals.

DETAILED DESCRIPTION

The present disclosure describes a method for verifying the
connectivity of software applications hosted on networked
computers. The connectivity of hosted function applications
to be loaded into networked computers is verified and vali
dated using quasi-hosted function applications that simulate
the communications functions (i.e., connectivity) of those
hosted function applications. The quasi-hosted function
applications are run on the same hardware that the real hosted
function applications will be running on. Furthermore, the
connectivity of a real hosted function application loaded into
one computer can be verified and validated by simulating
communications of that real hosted function application with
a multiplicity of quasi-hosted function applications running
on the networked computers. Many specific details of certain
embodiments are set forth in the following description to
provide a thorough understanding of those embodiments.
One skilled in the art, however, will understand that the inven
tion encompasses additional embodiments and may be prac
ticed without several of the details described below.
The embodiments disclosed herein comprise a network of

computers that are components of an avionics system. How
ever, the Subject matter claimed hereinafter has application in
other systems of networked computers and is not limited to
employment aboard an airplane.

FIG. 1 illustrates some of the types of components making
up a typical modern avionics system. This typical avionics
system comprises a multiplicity of computers connected by
an AFDX network. This AFDX network in turn comprises
Switches, end systems and virtual links as previously
described in the Background section. In one embodiment,
each AFDX end system is a specially made fault-tolerant and
deterministic network interface card, and each AFDX Switch
is a specially made fault-tolerant and deterministic network
switch/router. The details of such an AFDX network are well
known in the art and will not be described in further detail
herein. The typical avionics system comprises a multiplicity

US 8,332,504 B2
5

of general purpose modules (GPMs), which are computers for
general computing needs. Only one GPM (number 4) is
depicted in FIG. 1. Other computers of the avionics system,
Such as line replaceable units (LRUs) and remote data con
centrators (RDCs), are special purpose computers. Only one
LRU (number 6) and one RDC (number 8) are depicted in
FIG.1. Selected ones of the GPMs, LRUs and RDCs can be
configured to communicate with each other via the AFDX
network 2. Some of these computers can also be configured to
communicate with other computers via other types of net
works or databuses. In other words, the avionics system may
incorporate more than one type of network or databus for
enabling its system components to communicate.
The methods disclosed herein for verifying the connectiv

ity of Software applications hosted on networked computers
may be employed in the construction of an aircraft having an
avionics system comprising a multiplicity of computers con
nected by a network or databus. To facilitate data transmis
sion across the network, the various Subsystems must be
properly configured.

In accordance with one implementation, the avionics Sub
systems can have all their configuration parameters and data
stored inside an Interface Configuration Database (ICD) in
XML file format. These XML configuration files define how
each component of the avionics system is connected and
configured, how the data (and what kind of data) flow from
one end of the system to another, how various devices in the
system interact with each other, etc. More specifically, the
ICD contains all the data and parameters (several hundred
thousand) for configuration of airplane avionics systems.
These data and parameters define how components on the
airplane communicate with each other (protocol), dictate
rate/frequency at which they initiate and respond to commu
nication protocols, and allocate in which computing node a
particular application program resides. Since each node hosts
multiple applications, the ICD also stipulates where in a
computer node's memory space each application should stay.
The Boeing 787 program has multiple vendors who supply

platforms (hardware and tools) and software (i.e., hosted
function) applications for assembly of its avionics system.
These suppliers depend upon the ICD parameters and data for
configuration so that all the hardware and Software compo
nents can work and function together Smoothly when the
system is assembled. To supply these vendors with the needed
configurations, the data from the ICD is exported out in a
single 2-gigabyte XML file. A special tool is used to process
this single gigantic XML file and break it into many Smaller
and manageable sets of XML files for each system compo
nent. More specifically, the large system configuration data
base file containing configuration parameters and data for
multiple desired hosted function applications is parsed into a
multiplicity of component configuration files respectively
containing the configuration parameters and data for respec
tive ones of the multiplicity of desired hosted function appli
cations. These component XML configuration files are then
distributed to the various component vendors and Suppliers
for their unit or Sub-system configuration and testing. Each
hosted function supplier must then build an executable file
that is the hosted function application for the particular mod
ule at issue. The build process 10 is depicted in FIG. 2. The
hosted function configuration files 12, application Source
code 14 and a real-time operating system (RTOS) kernel
(including hardware drivers) 16 are compiled and linked to
generate hosted function executable files 18 (in binary for
mat). The compiler translates the source code into object/
machine code. The linking procedure combines the object/
machine code from the hosted function application and RTOS

10

15

25

30

35

40

45

50

55

60

65

6
kernel into one executable code module. Later the vendor or
Supplier will bring this executable hosted function applica
tion to a Boeing facility for final system integration and
testing.
To facilitate system integration, it is desirable that each

hosted function supplier should be able to plug in his module
for system testing and integration. However, this is not pos
sible at an early stage when most hosted function applications
have not yet been provided, i.e., when a functioning avionics
system is not yet running. There will be no running avionics
system because to drive data flow in accordance with the
configurations stored in the ICD requires hosted function
applications.

This problem can be solved by generating an avionics
system infrastructure comprising executable quasi-hosted
function applications that simulate the communications func
tions of the hosted function applications specified by system
requirements. These executable quasi-hosted function appli
cations are then loaded into the hardware (i.e., computers) of
the avionics system. A Supplier can then plug in his hosted
function application for system integration and testing. When
this real hosted function application is brought in for testing,
the quasi-hosted function application corresponding to it can
be backed out of the avionics system and the real hosted
function application is loaded in its place. Once installed in
the avionics system, the connectivity of the real hosted func
tion application is exercised by means of attempts to send
and/or receive data packets to and/or from one or more quasi
hosted function applications via the network. Which quasi
hosted function applications the real hosted function applica
tion communicates with during system operation is dictated
by the interface configuration for that real hosted function.
During this testing process, data representing the connectivity
of the real hosted function application is acquired and ana
lyzed.

Alternatively, the above-described avionics system infra
structure comprising quasi-hosted function applications
loaded into networked computers can be exercised to verify
and validate the ICD parameters and data for system-wide
correctness and accuracy. In this instance, the connectivity of
each quasi-hosted function application can be exercised by
means of attempts to send and/or receive data packets to
and/or from other quasi-hosted function applications via the
network. Which quasi-hosted function applications commu
nicate with each other is again dictated by the interface con
figurations for the corresponding real hosted function appli
cations. During this testing process, data representing the
connectivity of each quasi-hosted function application is
acquired and analyzed.
As a result, all the ICD parameters and data can run through

the avionics system from end to end. The data flow results can
be verified and system performance can be evaluated. More
over, the results of these system analyses can be fed back into
the ICD to generate a new set of configuration parameters and
data. These new component configuration files can then be
used to generate new quasi-hosted function applications that
represent the communications functions of an avionics sys
tem having improved connectivity. These new quasi-hosted
function applications can then be loaded into the avionics
system hardware and exercised. This iterative process can be
repeated until the ICD parameters and data for the various
system components have been fine tuned to optimize connec
tivity amongst the avionics system components.

In accordance with one embodiment, a so-called Static
Simulation Auto Code Generation process uses ICDXML
based configuration files as inputs to generate a Software Suite
automatically. The Static Simulation Auto Code Generation

US 8,332,504 B2
7

tool chain uses ICD data and parameters (in XML files) as
input and automatically produces avionics system applica
tions in C language as a running and functioning avionics
system infrastructure. The resultant running and functioning
avionics system infrastructure, with real production param
eters and data from the ICD, can verify and validate ICD
parameters and data for system-wide correctness and accu
racy and enable hosted function application Software Suppli
ers to plug in their software for system testing and integration.
Furthermore, by evaluating system performance and resource
allocation, one can further fine tune the system with various
test data and feed them back into the ICD to generate a new set
of configuration files. This automatic process promises a
quick turn-around time, which is especially useful during the
flight test stage. Finally with the automatic code generation
and the ICD, one can test and evaluate final airplane configu
rations way before vendors and suppliers show up with their
hardware and Software components for airplane level system
integration.
Component level XML hosted function interface configu

ration files capture message data senders and receivers, sizes
of the message data that pass between the sender and receiver,
and the rates/frequencies at which the data messages are
transmitted and received by senders and receivers, respec
tively. In addition the protocols that transmit and receive
message data for all the senders and receivers are fully stipu
lated. The Static Simulation Auto Code Generation tool chain
extracts the aforementioned data and parameters from the
component XML configuration files (using XML stylesheets)
and automatically generates C language source code, make
files, and build directories to build those C language pro
grams. Together with other tools (in this case JavaScript), the
entire avionics system infrastructure can be generated auto
matically. The generated C language source files, makefiles
and build directories are input to a build process along with
the XML hosted function configuration files and the RTOS
kernel (including hardware drivers) for each system module.
(The RTOS configuration is included in the component con
figuration files.)
As previously described, the build process involves com

piling and linking. The compiler translates the source code
into object/machine code. The linking procedure combines
the object/machine code from the Clanguage source code and
RTOS kernel into one executable code module. In one
embodiment, the makefile is a text file that defines how to
compile each Source code file and how to link them together.
The build process executes the instructions in the makefile
and generates object/machine code files at the location speci
fied by the build directory.
A result of the build process for each module is a quasi

hosted function application (in the form of an executable file)
that simulates a sender and/or a receiver. A “quasi-hosted
function application' is a fake hosted function: both have the
same inputs and outputs format, but the quasi-hosted function
application lacks the algorithms to process these inputs and
outputs. In the case of a sender, the quasi-hosted function
application simulates a sender to send out message data
blocks, with the exact sizes and at the right rates/frequencies
as defined in the ICD, via proper protocols to the receivers,
which are also designated in the ICD. By the same token, the
receiver programs receive the message data blocks at the
exact rates/frequencies via proper protocols from the Senders.

Moreover, the sender and receiver programs have built in
instrumentation algorithms. As used herein, “instrumenta
tion” means keeping track of and checking whether the hosted
function applications can execute and perform to the expec
tations of the system configuration. For example, the system

10

15

25

30

35

40

45

50

55

60

65

8
configuration may state that hosted function application A
sends out 20 bytes to hosted function application Bevery 10
milliseconds, 30 bytes to hosted function application C every
20 milliseconds, and 40 bytes to hosted function application
Devery 30 milliseconds, and receives 40 bytes from hosted
function application X every 40 milliseconds. In that case,
during testing using the avionics system infrastructure, the
instrumentation functionalities in the quasi-hosted function
applications corresponding to hosted function applications
A-D and X will report when and from whom they received
and how many bytes of data were received. Any mismatch of
data block size, rates/frequencies, or total miss of message
data blocks from the senders are automatically logged to a
disk file for post-test analysis.

It should be apparent that when the receiver never misses
any data blocks from the sender and the data blocks from the
sender arrive at the correct rates/frequencies and the data
block sizes per se are in accordance with the configuration
specifications in the ICD, then the communication channel
between the sender and receiver is well connected. Under the
same scenario, when computer node A transmits message
data blocks to computer node B, which in turn sends data to
computer node C, which turns around and delivers data
blocks to computer node D and when node D receives data
with valid protocols and at the rates as defined in the ICD, one
can fairly presume that all the three connection channels
A->B, B->C, and C->D are well connected. This validates
that the XML configuration files for these computer nodes are
in good working order and the connections amongst them are
correctly configured. This also verifies that all the input data
and output data are correct in terms of data size and timing.
The Static Simulation Auto Code Generation process will

now be described in more detail with reference to FIG. 3.
Inputs for Static Simulation Auto Code Generation
Module and hosted function XML configuration files

(block 22 in FIG. 3) are taken directly from the ICD. There is
one module XML configuration file for each module (i.e.
GPM, LRU, or RDC), and a typical system may consist of
multiple (e.g., 76) modules. Each module usually contains
many hosted functions. Each hosted function in turn has its
own XML configuration file. The module configuration file
defines each hosted function for memory size, execution rate
and schedule, how it should reside inside the module, and how
all hosted functions inside the module should be connected
with other hosted functions. The hosted function XML con
figuration file has information concerning what communica
tion protocol to use to communicate with another hosted
function, whether this hosted function is a sender or receiver,
memory resource allocation for this hosted function, trans
mission and receiving data block sizes, and data transmission
rates, etc.

In addition, End System text configuration files (block 24
in FIG. 3) are taken directly from the ICD. Each module has
one AFDX End System configuration file. This text-based
configuration file describes how the AFDX end system for the
current module is configured and how it should be built so that
the text in the configuration file can be translated into binary
file, which is to be loaded to the end system for execution.

Also, AFDX Switch text configuration files (block 26 in
FIG. 3) are taken directly from the ICD. Each module must
connect to an AFDX Switch so that it can receive messages
from other modules and send data blocks out to other mod
ules. The system contains several switches. This text-based
configuration file dictates how the particular Switch is con
figured and how it should be built (a process that the text in the
configuration file can be compiled into binary file to be loaded
into the switch).

US 8,332,504 B2

A kernel XML configuration file and a Core OS binary file
(block 28 in FIG.3) are taken directly from the ICD. The Core
OS is the binary operating system for the module and it is
pre-configured. The Static Simulation Auto Code Generation
(block 20 in FIG. 3) does not use it directly it simply passes
it to the build process (block 10 in FIG. 3) so that the OS can
be linked into the module executable binary file for execution.
The kernel XML configuration file just lists where this Core
OS file resides so it can be copied by the build process from
the source folder to the target (i.e., the build directory). Each
module has its own unique Core OS pre-configured for its
operating environment.
Outputs for Static Simulation Auto Code Generation
The Static Simulation Auto Code Generation process out

puts source code files, makefiles, and build directories for
each GPM, LRU, or RDC (block 30 in FIG.3). The module is
the top directory. Under it, each hosted function has its own
independent directory that bears the name of the hosted func
tion. When source code files for hosted functions are gener
ated, they reside in each hosted function directory together
with makefiles. The makefiles are software tools to build
these hosted functions. When all the hosted functions under a
particular module are compiled and linked, they together
form a single executable binary file (including the AFDX End
System binary file) for the module and this file will be loaded
into the module for execution.
The Static Simulation Auto Code Generation process also

outputs makefiles for the AFDX end systems (block 32 in
FIG. 3). Since each module has an end system and it is
pre-configured distinctly with a unique text configuration file,
the makefile for the module is generated for the build process
to match the tool and the text file so that the binary file can be
produced from the text file by the build process.
The Static Simulation Auto Code Generation process also

outputs makefiles for the AFDX switches (block 34 in FIG.
3). Each system has several AFDX switches and each is
distinctly pre-configured with a unique text configuration file.
The makefile for each AFDX switch is generated to be con
sumed by the build process so that the latter can locate the tool
to render the text files info binary files to be loaded into the
AFDX Switch.
Build Process
The build process (block 10 in FIG. 3) compiles the source

code for all the hosted functions into binary object code, and
links them together with the Core OS binary code, End Sys
tembinary code, and other libraries to create a single execut
able binary file for each module (block 36 in FIG. 3). This is
the final binary file that will be loaded into each module
eventually for execution.

Prior to the creation of the module binary file, the build
process translates the End System text configuration file into
a binary file (block 38 in FIG.3), which will be linked into the
module binary file for execution.

Additionally, the build process also transforms the text
configuration for AFDX switch into a binary file (block 40 in
FIG. 3) that will be separately loaded into the AFDX switch.

Furthermore, the build process also has other software
tools to conduct validity check on module level, hosted func
tion level, and End System configurations files. As the respec
tive terms are used herein, the build process (block 10 in FIG.
3) is not part of the Static Simulated Auto Code Generation
tool (block 20 in FIG. 3).
Outputs of the Build Process

Three types of binary files are produced by the build pro
cess: the binary executable file for a particular module, the
binary files for AFDX end system, and the binary file for

10

15

25

30

35

40

45

50

55

60

65

10
AFDX switch (see blocks 36,38 and 40 respectively in FIG.
3). The last one is system based whilst the first two are module
based.
Static Simulation Auto Code Generation Operation
The Static Simulation Auto Code Generation tool chain

(block 20 in FIG. 3) consists of two major software parts—a
script file program and a set of XML Extensible Stylesheet
Language (XSLT) files. The main function for the script
program is to create build directories for hosted functions
Source code, compose makefiles in those directories to build
the hosted functions source code, and invoke the proper XSLT
files to automatically generate the quasi-hosted functions. On
the other hand, the XSLT files are the auto code generator.
They process the module and hosted function XML configu
ration files to pick out the needed information and data so that
the quasi-hosted functions can be generated. In short, the
Script program creates an environment to host the quasi
hosted function source code files whilst the XSLT files gen
erate the quasi-hosted functions.
The module XML configuration file contains all the hosted

function specifications. The script program reads this XML
file to create one sub-directory for each hosted function under
the module folder and fill in relevant makefiles in those direc
tories. Thus, the binary executable files for all the quasi
hosted functions, at both the module leveland hosted function
level (plus binary file for the End System), can be built.
The script program also invokes the XSLT stylesheet to

automatically generate quasi-hosted function source code.
Each XSLT stylesheet generates a portion of the quasi-hosted
functions. By calling each XSLT stylesheet in the right order,
the Script program drives how each quasi-hosted function is
composed.
The XSLT stylesheets actually generate quasi-hosted func

tion source code. They process each hosted function XML
configuration file to obtain information on each message
transmission protocol and rate, message flow direction (send
ing or receiving), message block size, and the message con
nection points (who sends to whom and who receives from
whom). Based on the given information the XSLT stylesheets
come to work—for every message to be sent, the XSLT gen
erates Source code to send the message data block with the
dictated data block size, at the pre-defined rates, with the
stipulated protocol, and to the designated receiver. The same
principle applies to every message to be received by the
quasi-hosted function, except that the direction of transmis
sion changed from sending to receiving.

In summary, the XSLT stylesheets use the definitions of
each message data block inside the hosted function XML
configuration file to create source code to process each of
these messages via a transmission or receiving algorithm.
To ensure the quasi-hosted functions satisfy the lab work

ing environment, some instrumentation algorithm source
code is injected into each quasi-hosted function by the XSLT
stylesheets for system performance and characterization test
ing purpose. These instrumentation functionalities also dem
onstrate in real time whether the connections among all the
quasi-hosted functions are good or not.

In addition, the XSLT stylesheet parses hosted function
XML configuration files for the latter's initialization status so
that the proper source code can be generated to ensure the
quasi-hosted function can start up according to the specifica
tion in the right mode. This completes the full quasi-hosted
function initialization and data transmission or receiving.
The module XML configuration file defines how all the

hosted functions under it are laid out inside the module, and
how all of them are related to the module, and the scheduling
of all the hosted functions. All these parameters are picked up

US 8,332,504 B2
11

by XSLT stylesheets so that proper source code can be created
for the targeted quasi-hosted function to avoid any contention
for hardware resources or any unintentional waste of those
SOUCS.

The Static Simulated Auto Code Generation works one
module at a time. To create an entire system that embraces
multiple modules, the user simply needs to populate the tool
chain programmatically (by using Script, for example) to all
the modules and add a top level (system level) makefile. With
a hit of the return key, the entire system that contains all the
modules and all the quasi-hosted functions under each mod
ule can be automatically generated, built, and ready to be
loaded to different hardware modules like GPMs, LRUs, and
RDCS.

For a particular system of networked computers, there may
be several score of nodes configured in the ICD with tens of
thousands of communication channels distributed among the
nodes via different communication protocols. The Static
Simulation Auto Code Generation tool chain will produce
quasi-hosted function application programs to cover every
computer node and each communication channel, plus many
switches that wire these computer nodes together. When
every computer node and each communication channel in the
system is connected, one can prove that the sets of module
level XML configuration files are correct and accurate and
they are ready to be distributed to the hosted function suppli
CS.

In accordance with one embodiment, the system of net
worked computers is an avionics system of the type depicted
in FIG.1. In that instance, a quasi-hosted function application
can be generated for each function to be hosted on each GPM,
LRU, and RDC. These executable files are then loaded into
the respective hardware components. This allows one to
simulate the entire avionic system communications function
ality on the avionics system hardware before the existence of
validated and verified hosted function applications. When a
Supplier brings in a real hosted function application for test
ing and system integration, that real hosted function applica
tion can be substituted for the corresponding quasi-hosted
function application in the system infrastructure. The real
hosted function applications can be tested one at a time until
the entire system functions in accordance with the interface
configuration specifications.

In addition to connectivity testing and Verification, the
application programs produced by Static Simulation Auto
Code Generation can also conduct system characterization,
performance and fault tolerance. For example, by design
(which should be reflected in the ICD database) any single
node failure should not cripple the entire system. One can
disable a computer node deliberately and check out the sys
tem level fault tolerance via connectivity.

System performance is another aspect that can be enhanced
using Static Simulation Auto Code Generation. In the past,
airplane engineers calculated and distributed the system load
via the ICD, but they did not check out their calculations or
test them beyond simple modeling. Now with the Static Simu
lation Auto Code Generation tool chain, the system perfor
mance and characterization can be observed easily. Any mis
haps and abnormal behaviors can be collected and the right
data and parameters can be fed back into the ICD for further
fine tuning and testing.

Evaluating the connectivity performance of a real hosted
function during transmission of data on the network can also
be used to test system hardware for performance, character
ization and resource allocation. The hardware includes
GPMs, LRUs, RDCs, AFDX switches, and End Systems. The
test can reveal GPM processor (CPU) performance and

10

15

25

30

35

40

45

50

55

60

65

12
resource allocation, demonstrate AFDX switch jitters and
virtual links allocation, and show End System behavior in a
live avionics working environment

In short, the Static Simulation Auto Code Generation tool
chain can automatically generate a running and functioning
applications to statically simulate airplane level avionics sys
tem and validate and verify ICD configuration data and
parameters, check components rates/frequencies, and test
system level computing resource allocation and performance.
The test results can then be fed back into ICD to prompt a new
round of configuration files and new applications can be
automatically generated and tested again. The process can go
on until satisfactory connectivity is achieved.

While the invention has been described with reference to
certain embodiments, it will be understood by those skilled in
the art that various changes may be made and equivalents may
be substituted for elements thereof without departing from
the scope or spirit of the invention. In addition, many modi
fications may be made to adapt a particular situation to the
teachings of the invention without departing from the essen
tial scope or spirit thereof. Therefore it is intended that the
invention not be limited to the particular embodiment dis
closed as the best or preferred mode contemplated for carry
ing out this invention, but that the invention will include all
embodiments falling within the scope of the appended claims.

The invention claimed is:
1. A method for simulating the connectivity of hosted func

tion applications hosted on hardware modules which are con
nected to network Switches via end systems, comprising the
following steps:

storing in an interface configuration database a respective
module configuration file for each hardware module of a
multiplicity of hardware modules, wherein each module
configuration file defines each hosted function applica
tion to be hosted in a respective hardware module for
memory size, execution rate and schedule, and how all
hosted function applications should be connected with
other hosted function applications;

storing in said interface configuration database a respective
hosted function configuration file for each hosted func
tion to be contained in any hardware module, wherein
each hosted function configuration file has information
concerning what communication protocol to use to com
municate with another hosted function application,
whether this hosted function application is a sender or
receiver, memory resource allocation for this hosted
function application, transmission and receiving data
block sizes, and data transmission rates;

extracting hosted function configuration information from
said interface configuration database;

auto generating a first set of respective quasi-hosted func
tion source code files from said extracted hosted func
tion configuration information for each one of a plurality
of quasi-hosted functions that simulate the communica
tions functions of respective ones of said hosted function
applications;

creating makefiles that define how to compile each quasi
hosted function source code file of said first set and how
to link them together;

building executable files for said first set of quasi-hosted
function applications using at least said makefiles and
said first set of quasi-hosted function source code files;

loading said executable files into the hardware modules;
after said executable files have been loaded, causing one or
more of said auto generated quasi-hosted function appli

US 8,332,504 B2
13

cations to exchange data blocks among other quasi
hosted function applications via the network Switches;
and

using the auto generated quasi-hosted functions to acquire
and analyze data representing the connectivity of said
quasi-hosted function applications during said data
exchanges,

wherein each of said quasi-hosted function applications
simulates a sender and/or a receiver of a respective
desired hosted function application with the same inputs
and outputs format, but lacks algorithms to process these
inputs and outputs.

2. The method as recited in claim 1, wherein each of said
quasi-hosted function applications simulates a sender and/or
a receiver of a respective desired hosted function application
with the same inputs and outputs format, but lacks algorithms
to process these inputs and outputs.

3. The method as recited in claim 1, further comprising the
step of generating instrumentation algorithm source code
buried in said quasi-hosted function source code, wherein
said instrumentation algorithm source code, when executed,
is capable of logging any one of the following:

mismatch of data block size, mismatch of rates/frequencies
or total miss of message data blocks, and network,
Switches, and end systems jitters in various real avionics
operating modes.

4. The method as recited in claim 1, further comprising the
step of Verifying the time durations and data block size allo
cated for each quasi-hosted function application to transmit
data on the network.

5. The method as recited in claim 1, further comprising the
step of evaluating the connectivity performance of each
quasi-hosted function application during transmission of data
on the network.

6. The method as recited in claim 5, further comprising the
steps of:

generating a second set of respective quasi-hosted function
Source code files that include instrumentation algo
rithms to take into account any mishaps or abnormal
behavior identified during said evaluating step;

creating makefiles that define how to compile each quasi
hosted function source code file of said second set and
how to link them together;

building executable files for said second set of quasi-hosted
function applications using at least said makefiles and
said second set of quasi-hosted function source code
files;

loading said executable files for said second set of quasi
hosted function applications into the hardware modules
in place of said executable files for said first set of
quasi-hosted function applications;

after said executable files for said second set of quasi
hosted function applications have been loaded, causing
one or more of said quasi-hosted function applications to
exchange data blocks among other quasi-hosted func
tion applications via the network Switches; and

acquiring and analyzing data representing the connectivity
of said quasi-hosted function applications during said
data exchanges.

7. The method as recited in claim 1, further comprising the
step of determining the impact of disablement of one of said
quasi-hosted function applications on the connectivity per
formance of other quasi-hosted function applications.

8. The method as recited in claim 1, wherein said configu
ration files are in XML format, and said generating step
comprises invoking XSLT stylesheets in a predetermined

10

15

25

30

35

40

45

50

55

60

65

14
order to parse configuration parameters and data in said XML
configuration files to generate said quasi-hosted function
Source code files.

9. The method as recited in claim 1, wherein said execut
able files simulate avionics system communications function
ality.

10. A method for simulating the connectivity of hosted
function applications hosted on hardware modules which are
connected to network Switches via end systems, comprising
the following steps:

storing in an interface configuration database a respective
module configuration file for each hardware module of a
multiplicity of hardware modules, wherein each module
configuration file defines each hosted function applica
tion to be hosted in a respective hardware module for
memory size, execution rate and schedule, and how all
hosted function applications should be connected with
other hosted function applications;

storing in said interface configuration database a respective
hosted function configuration file for each hosted func
tion to be contained in any hardware module, wherein
each hosted function configuration file has information
concerning what communication protocol to use to com
municate with another hosted function application,
whether this hosted function application is a sender or
receiver, memory resource allocation for this hosted
function application, transmission and receiving data
block sizes, and data transmission rates;

extracting hosted function configuration information from
said interface configuration database;

auto generating a set of respective quasi-hosted function
source code files from said extracted hosted function
configuration information for each one of a plurality of
quasi-hosted functions that simulate the communica
tions functions of respective ones of said hosted function
applications;

creating makefiles that define how to compile each quasi
hosted function source code file and how to link them
together,

building executable files for said quasi-hosted function
applications using at least said makefiles and said quasi
hosted function source code files;

loading said executable files into the hardware modules;
loading an executable file for a real hosted function appli

cation in place of one of said executable files for one of
said quasi-hosted function applications that simulates
the communications functions of said real hosted func
tion application;

after said executable files have been loaded, causing said
real hosted function application to exchange data blocks
with said auto generate quasi-hosted function applica
tions via the network Switches; and

using the auto generated quasi-hosted functions to acquire
and analyze data representing the connectivity of said
real hosted function application during said data
exchanges,

wherein each of said quasi-hosted function applications
simulates a sender and/or a receiver of a respective
desired hosted function application with the same inputs
and outputs format, but lacks algorithms to process these
inputs and outputs.

11. The method as recited in claim 10, wherein each of said
quasi-hosted function applications simulates a sender and/or
a receiver of a respective desired hosted function application
with the same inputs and outputs format, but lacks algorithms
to process these inputs and outputs.

US 8,332,504 B2
15

12. The method as recited in claim 10, further comprising
the step of generating instrumentation algorithm source code
buried in said quasi-hosted function source code, wherein
said instrumentation algorithm source code, when executed,
is capable of logging any one of the following: mismatch of
data block size, mismatch of rates/frequencies or total miss of
message data blocks, and network, Switches, and end systems
jitters in various real avonics operating modes.

13. The method as recited in claim 10, further comprising
the step of evaluating the connectivity performance of said
real hosted function application during transmission of data
on the network.

14. The method as recited in claim 10, wherein said con
figuration files are in XML format, and said generating step
comprises invoking XSLT stylesheets in a predetermined
order to parse configuration parameters and data in said XML
configuration files to generate said quasi-hosted function
Source code files.

15. The method as recited in claim 10, wherein said execut
able files simulate avionics system communications function
ality.

16. A computer system for automatically generating source
code representing quasi-hosted function applications, said
computer system comprising:

computer memory storing a respective module XML con
figuration file for each hardware module of a multiplic
ity of hardware modules and a respective hosted func
tion XML configuration file for each hosted function to
be contained in any hardware module, wherein each
module configuration file defines each hosted function
application to be hosted in a respective hardware module
for memory size, execution rate and Schedule, and how
all hosted function applications should be connected
with other hosted function applications, and wherein
each hosted function XML configuration file has infor
mation concerning what communication protocol to use
to communicate with another hosted function applica

5

10

15

25

30

35

16
tion, whether this hosted function application is a sender
or receiver, memory resource allocation for this hosted
function application, transmission and receiving data
block sizes, and data transmission rates; and

a processor programmed to execute a software tool chain
comprising a script program and a set of XML extensible
stylesheet language (XSLT) files, wherein said Script
program is designed to read said module XML configu
ration files, create build directories for quasi-hosted
function source code files, compose makefiles in those
directories to build executable files based on quasi
hosted function source codes, and invoke the proper
XSLT files to automatically generate the quasi-hosted
function source code files, and wherein said XSLT files
are designed to extract hosted function configuration
information from said hosted function XML configura
tion files and generate said quasi-hosted function source
code files from said extracted hosted function configu
ration information for each one of a plurality of quasi
hosted functions that simulate the communications
functions of the respective hosted function applications,

wherein each of said quasi-hosted function applications
simulates a sender and/or a receiver of a respective
desired hosted function application with the same inputs
and outputs format, but lacks algorithms to process these
inputs and outputs, said quasi-hosted function source
code files containing source code for sending and/or
receiving message data blocks with predetermined data
block size, at predetermined rates, with a predetermined
protocol, and to a designated receiver or from a desig
nated sender.

17. The system as recited in claim 16, wherein said script
program reads each module XML configuration file to create
one sub-directory for each hosted function application under
a module folder and fill in relevant makefiles in those direc
tories.

