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COMPUTER - IMPLEMENTED METHOD AND Examples of dynamic obstacles may typically be areas 
A SYSTEM FOR DEFINING A PATH FOR A subject to a meteorological alert , like a storm contour , or the 
VEHICLE WITHIN AN ENVIRONMENT uncertainty contour of an aircraft . 

WITH OBSTACLES Advantageously , an aspect of the present teachings finds 
5 a free - collision path in an area including both types of 

RELATED PATENT APPLICATION obstacles , static and dynamic ones . A combination of heu 
ristic , geometric and computational algorithms provides an 

This application claims the benefit of foreign priority efficient and robust solution , which can be useful for pro 
pursuant to 35 U.S.C. § 119 ( b ) from European Patent ducing instructions to guide different kinds of moving 
Application No. 18382660.1 filed on Sep. 14 , 2018 . vehicles , such as fixed - wing aircraft , rotorcraft , ground 

robots , etc. In this regard , the heuristic may be construed as FIELD a particular decision - making criterion used to select an 
option rather than others . That is , a way of measuring that The present disclosure generally teaches techniques may consider different metrics . related to path finding in environments where obstacles may The present disclosure also uses the common tangent move or change their shape over time . In particular , the 

teachings further relate to planning and real - time guidance concept of a geometrical figure , normally a polygon . A 
applications , including those of unmanned aerial vehicles , common tangent is a line touching the geometrical figure 
ground robots and other moving autonomous vehicles . such that the whole figure lies to the same side of the line . 

20 In case of polygons , finding common tangents can be viewed 
BACKGROUND as finding extreme vertices of the polygon . Such represen 

tation may simplify implementation and reduce the number 
Recently , autonomous systems such as unmanned aerial of vertices to consider . A common tangent segment is a 

vehicles ( UAVs ) and self - driving personal vehicles have portion of a common tangent line whose end points are the 
become ubiquitous and keep growing steadily . Hence , tech- 25 source , the target or the polygon vertices . 
niques for generating efficient paths for different types of In general , the term path finding relates to a collection of 
vehicles are creating high expectations and becoming a techniques for finding an optimal ( e.g. , safest , shortest , etc. ) 
demand . route between two points , namely a source and a target , 
A large variety of different algorithms are available in the within an environment with obstacles . An optimal path is 

art . The solutions can be mainly classified in optimization- 30 usually defined by a set of legs ( at least one leg ) , each one based , evolutionary algorithms , potential fields , probabilis- defined between two waypoints . A visibility graph is one of 
tic methods and roadmap approaches . the possible techniques used to find such path and define its 

Most previous works on this topic derive from robotics legs . A visibility graph is a roadmap , a route that stores the 
science . Nevertheless , the definition of feasible autonomous visibility relationships between a set of objects considered as 
paths with no human intervention represents a major chal- 35 obstacles , which are normally defined by polygons . The 
lenge . Nowadays , more robust and efficient algorithms are visibility graph is basically made up of visible nodes and 
still a need in the industry . weighted edges . Visible nodes represent safe potential way 
Autonomous vehicles like UAVs typically include sensors points of the path that are mutually connected by edges , 

for gathering information of an environment through which which represent the legs of such path . Each edge carries a 
the vehicle navigates , which requires a large amount of 40 weight defined by a cost function , which is usually the 
computing power to avoid obstacles in a reliable manner Euclidean distance between the nodes . The joint of different 
while finding a valid path to a target or destination . The edges or legs provides a sub - path . Thus , a sub - path defines 
processing of data is normally too slow to be useful within a way of reaching a waypoint from another waypoint . 
an environment with obstacles in real - time applications . Still A valid path may comprise several sub - paths connected 
more , if there are moving obstacles or their shapes are 45 one to another to allow reaching the target . The creation of 
changing a visibility graph is a complex task that usually requires high 

In view of the above shortcomings , there is room for computational times to provide a feasible response . 
improving known solutions . Specifically , when obstacles are Normally , visibility - based path finding approaches repre 
approaching to a travel path and quick evasive maneuvers sent obstacles by geometric figures ( e.g. , polygons , circles , 
are required . 50 etc. ) since there are no performance losses related to dis 

cretization . 
SUMMARY It is generally recognized that the construction of tradi 

tional visibility graphs is inefficient for moderately intricate 
The present disclosure proposes an autonomous genera- environments . To overcome or at least mitigate some of the 

tion of conflict - free lateral paths in the presence of static 55 existing limitations , the disclosed teachings provide new 
and / or dynamic obstacles . techniques to carry out fewer checks . Pruning strategies are 
A static obstacle can be represented by an unchanging proposed to allow filtering out non - essential information 

geometric polygon . In turn , a dynamic obstacle can also be usually provided in real - world operational environments and 
represented by a geometric polygon , which may change not to prioritize a list of candidate waypoints to reach the target . 
only its position over time ( i.e. , moving obstacle ) but also its 60 In order to facilitate the identification of shortest paths in 
physical shape ( i.e. , morphing polygons ) in a known way . dynamic environments , the present disclosure makes use of 

The concept of obstacle should be construed in a broad a space of two dimensions plus time , notated as 2D + t space . 
sense , not only a physical object but also a surrounding The 2D + t space is an expansion of the Cartesian space in 
terrain , a no - incursion zone like a restricted area should be which the Z coordinate is used to represent time . By doing 
considered an obstacle . If they are motionless , they are 65 so , dynamic environments can be represented statically . 
considered static obstacles . Alternatively , if their shape In the 2D + t space , 2D polygons represent static obstacles . 
and / or position changes , they are considered dynamic . As to dynamic obstacles , since they may change position 
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( moving obstacles ) , shape ( morphing obstacles ) or both over A waypoint is said to be included in a sub - path since it 
time , they are represented in the 2D + t space as polytopes . forms part of the sub - path . Said included waypoint also 
A polytope is generally defined as a finite region of an becomes a second source to construct a subsequent velocity 

n - dimensional space enclosed by a finite number of hyper- cone until the target is reached . 
planes . Particularly in this disclosure , a polytope refers to a If the vehicle can change speed among sub - paths , an 
volumetric shape that describes the evolution of a 2D alternative valid path that reaches the target may be addi polygon's vertices through time . tionally found . 

Another important concept used is the velocity cone , Optionally , the method may also comprise generating a which is a surface in the 2D + t space that represents an further scene , namely , a second 2D scene consistent with the evolution through time of possible points that are reachable 10 subsequent velocity cone , which is different as its slope for a vehicle moving in a 2D plane at a constant speed from corresponds to a second speed and has an apex at the second a source . Consequently , the slope of a velocity cone is the 
speed value whereas the vertex of a velocity cone is the 
source at an initial time . Optionally , the method may also comprise computing , in 
An interception polygon is the result of the intersection of 15 parallel , a visibility graph algorithm for the second 2D 

the obstacles ' polytopes and the velocity cone . Such inter scene . Thereby , conflict - free sub - paths associated with the 
section produces a non - planar surface , thus projecting the second speed can be obtained . The method further comprises 
non - planar surface on a 2D plane to produce a " working composing an alternative valid path that results from includ 
scene ” with interception polygons to avoid in order to reach ing conflict - free sub - paths that the vehicle can traverse at the 
the target without conflicts . 20 second speed . 

In particular , the present disclosure is aimed at a com- Optionally , the method may additionally comprise select 
puter - implemented method and a system for obstacle avoid- ing the first speed or the second speed for the vehicle to 
ance capable of being reliable and less computing demand- traverse a static or dynamic obstacle according to a selection 
ing . criterion . Such selection criterion may take into account 

The computer - implemented method allows generating a 25 requirements like computational time , the traversed distance 
path for a vehicle to move from a first source to a target and / or the estimated arrival time , both defined for the 
within a 2D environment with one or more obstacles , the one vehicle to get from the first source to the target . 
or more obstacles being a static obstacle , a dynamic Optionally , the method may further comprise producing at 
obstacle , or both , by performing the following tasks : least one offset polygon , e.g. , for safety reasons . The offset 

Generating , in a 2D + t space , a velocity cone having a 30 polygon results from including a surrounding buffer area at 
slope corresponding to a first speed of the vehicle and the boundary of each interception polygon so that , the offset 
an apex at the first source at an initial time . The velocity polygon may encompass buffer areas pertaining to more 
cone represents a set of potential waypoints reachable than one interception polygon if the buffer areas run into 
from the first source for the vehicle moving at the first each other . 
speed . In respect of the system , it allows generating a path for a 

For each static or dynamic obstacle present in the 2D vehicle from a first source to a target within a 2D environ 
environment , providing a polytope in the 2D + t space . ment with one or more dynamic obstacles . The system 
The polytope represents a 2D polygon modeling an includes a computing unit comprising a memory to store 
obstacle at an initial time with its evolution over time . computer readable code and one or more processors to 

Obtaining one or more interception polygons by inter- 40 execute the code so that the following tasks may be per 
secting the velocity cone with the polytope in the 2D + t formed : 
space , thereby forming a non - planar surface , and pro- Generating , in a 2D + t space , a velocity cone having a 
jecting the non - planar surface on the 2D environment . slope corresponding to a first speed and an apex at the 

Generating a first 2D scene comprising the one or more first source at an initial time . The velocity cone repre 
interception polygons to avoid . sents a set of potential waypoints reachable from the 

Computing a visibility graph algorithm for the generated first source for the vehicle moving at the first speed . 
first 2D scene based on a first number of vertices For each static or dynamic obstacle present in the 2D 
associated with the one or more interception polygons environment , providing a polytope in the 2D + t space . 
and obtaining a plurality of conflict - free sub - paths for The polytope represents a 2D polygon modeling an 
the vehicle to traverse that avoids each static or 50 obstacle at an initial time with its evolution over time . 
dynamic obstacle . Obtaining one or more interception polygons by inter 

Composing a valid path connecting the first source to the secting the velocity cone with the polytope in the 2D + t 
target based on the plurality of conflict - free sub - paths . space , thereby forming a non - planar surface , and pro 

Optionally , the method may produce a set of instructions jecting the non - planar surface on the 2D environment . 
for guiding the vehicle among the obstacles according to the 55 Generating a first 2D scene comprising the one or more 
valid path . interception polygons to avoid . 

The visibility graph algorithm may apply a vertex reduc- Computing a visibility graph algorithm for the generated 
tion heuristic based on checking visibility of a segment from first 2D scene based on a first number of vertices 
the first source to the target among the one or more inter associated with the one or more interception polygons 
ception polygons . A segment is visible when it does not 60 and obtaining a plurality of conflict - free sub - paths for 
cross anything . the vehicle to traverse that avoids each static or 

The vertex reduction heuristic may be further based on dynamic obstacle . 
computing a common tangent segment to each interception Composing a valid path connecting the first source to the 
polygon being crossed . The endpoints of the common tan- target based on the plurality of conflict - free sub - paths . 
gent segment can be added to a list as potential waypoints . 65 The system may also include several devices like sensors 
Backtracking the potential waypoints from the target to the for gathering information about obstacles and a navigation 
first source provides a set of sub - paths that form a valid path . unit to obtain the first source as a position of the vehicle and 
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to process instructions for guiding said vehicle among FIG . 14 shows a projection on the XY plane of intersec 
obstacles according to the valid path that is conflict - free . tion points of FIG . 13 FIG . 15 shows an example of creation 

Advantageously , the system may be implemented in an of an interception polygon using a convex hull . 
autonomous or semi - autonomous vehicle , like a UAV or a FIG . 16 shows an application of an offset for two inter 
ground robot . ception polygons resulting in one offset polygon . 

Another aspect of the present disclosure relates to com- FIG . 17 shows a flow diagram of an example of a 
puter program product ( e.g. , a computer - readable medium ) sub - process for creating a visibility subgraph . 
that includes computer code instructions that , when FIG . 18 shows a graphical example of complexity reduc 
executed by a processor , causes the processor to perform the tion using a heuristic to generate sub - paths . 
methods for generating a path for a vehicle from a first FIG . 19 shows an example of a further graphical com 
source to a target within a 2D environment with one or more parison for generating common tangents as sub - paths for 
dynamic obstacles , described above . avoidance of non - convex obstacles . 

In general , according to the present teachings numerous FIGS . 20A , 20B , 20C , 20D , 20E and 20F depict several 
functionalities and benefits may be offered to different stages of a graph expansion algorithm in a two - obstacle 
domains . For instance , in the aerospace domain , this algo- environment . 
rithm could assist the Pilot - in - Command ( PIC ) to identify a FIG . 21 shows an example of a comparison of the graph 
conflict avoidance path ; in the self - driving cars domain this expansion of FIGS . 20A - 20F and a typical visibility graph . 
algorithm could help to avoid collisions with other cars . FIG . 22 shows an example of eight sequences displaying 

In sum , the present teachings allow a moving vehicle to 20 a vehicle moving along a computed free - collision path 
safely and efficiently continue its motion to a destination among three morphing polygons . 
through moving or changing obstacles . FIG . 23 shows a high - level block diagram of an overall 
As a consequence , a significant reduction of unnecessary example of a system for generating a path for a vehicle 

waypoints and sub - paths can be achieved while such reduc- within a 2D environment with dynamic obstacles . 
tion advantageously does not influence the result . 

Advantageous developments of the method and system DETAILED DESCRIPTION 
are discussed as follows . The features , functions , and advan 
tages that have been discussed can be achieved indepen- Various examples illustrate the creation of autonomous 
dently in various examples or may be combined in yet other conflict - free shortest lateral paths for generic vehicles in 
examples further details of which can be seen with reference 30 2D + t dynamic environments in which the vehicle is consid 
to the following description and drawings . ered as a point particle and obstacles are defined by polygons 

that can be static or modify their shapes and / or location . 
BRIEF DESCRIPTION OF THE DRAWINGS Importantly , the application of these teachings is not limited 

to the particulars set forth in the following detailed descrip 
A series of drawings , which aid in better understanding tion or drawings . 

the disclosure and which are presented as non - limiting The proposed solution is effective , robust and easy to 
examples and are very briefly described below . implement , mainly due to a creation of a customized 2D + t 
FIG . 1 shows a representation in a 2D + t space of an visibility graph and certain assumptions . 

example of a static obstacle and an example of a moving 40 Simplifications : 
obstacle . Likewise most of the existing solutions , successfully 
FIG . 2 shows a representation in a 2D + t space of an finding a free - collision path implies certain simplifications 

example of a morphing obstacle . should be made : 
FIG . 3 shows a representation of an example of a velocity i ) Environments are defined by a single vehicle , a source 

cone in a 2D + t space . and a target and an indefinite number of static and 
FIGS . 4A , 4B and 4C show examples of three free- dynamic obstacles . Obstacles can be regular or irregu 

collision graphs avoiding an obstacle in a 2D space . lar polygons and they do not need to be convex . 
FIG . 5 shows a flow diagram of an overall example of a ii ) Both , the vehicle and the moving obstacles travel on 

method for generating a path within a 2D environment with the same plane . 
dynamic obstacles with high - level sub - processes . iii ) The vehicle is considered as a point , which is able to FIG . 6 shows a flow diagram of an example of a simple move to any location into the environment . resolution strategy with high - level sub - processes . iv ) The vehicle and the obstacle's vertices travel follow FIG . 7 shows a flow diagram of an example of a parallel ing straight segments defined between two points . resolution strategy with high - level sub - processes . v ) Vehicle's velocity is considered constant between FIG . 8 shows a flow diagram of an example of a com- 55 waypoint segments . However , depending on the reso posite resolution strategy with high - level sub - processes . lution strategy , some examples allow to modify the FIGS . 9A , 9B and 9C show resulting graphs for different 
resolution strategies . vehicle's velocity at every waypoint change . 
FIG . 10 shows a flow diagram of an example of a vi ) Other dynamic aspects of the vehicle such as mass , 

sub - process for calculating interception of polygons . accelerations , moments of inertia and forces are con 
FIG . 11 shows a representation of an example of inter sidered negligible . 

section between a polytope and a velocity cone . vii ) Polygons are inflated in order to consider a safety 
FIG . 12 shows an example of a calculation of intersection distance . The vehicle's volume is taken into account by 

using 2D simplifications . such distance , along with other parameters and safety 
FIG . 13 shows an example of geometric intersection in a 65 considerations ( e.g. , maximum turn radius of a vehicle , 

2D + t space of a static obstacle's polytope and a velocity distortion factors due to Earth's sphericity , minimum 
required lateral separation , etc. ) . 
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viii ) The duration of the planning process is negligible ; Many different strategies to expand a graph within a 2D 
otherwise , the vehicle could move significantly from environment may be used . Yet not all of them are equally 
the initial planning position , invalidating a planned optimal . 
path . FIGS . 4A , 4B and 4C show examples of three possible 

ix ) It does not consider any external factor such as wind , 5 graphs to avoid a static obstacle 101. The first graph of FIG . 
land surface or geodetic aspects . Thus , the wind is 4A , presented on the left , is less efficient because it does not 
considered as null , land surface is planar without reduce the number of possible vertices to visit and moreover , 
roughness and earth is approximated by a plane . the possible paths obtained are far from the obstacle's 

In the described 2D + t space , due to assumptions i ) and iv ) , boundary . The second central graph of FIG . 4B , on the 
a static 2D object takes the form of a straight prism in 2D + t , 10 center , removes two superfluous edges and is a more effi cient version than the first . Finally , the third graph of FIG . whereas a moving polygon appears as a chain of one or more 4C on the right is only based on visibility and contains the oblique prisms . This effect will be better appreciated in the optimal paths : source- > C - D- > target , and : source- > B - A next drawings . 
FIG . 1 shows a representation in the 2D + t space ( with 15 because the source and target points have been set in the > target . In FIG . 4C , both paths are exceptionally valid 

axes X , Y , t ) of a square obstacle . On the left , there is a static symmetric line of the polygon . Generally , source and target 
obstacle 101 , whereas on the right a dynamic one , i.e. , points may be shifted from the symmetric line and , then only 
moving obstacle 102 that moves linearly between two one path would be the geometric solution . 
positions . Both obstacles 101 , 102 are rigid objects because FIG . 5 depicts an overall view of a flow chart of an 
their shape does not change over time . 20 example of a method for generating a path divided into six 
FIG . 2 shows a representation in the 2D + t space of a sub - processes . A sub - process is construed as a high - level 

morphing obstacle 103. Morphing obstacles 103 are task encompassing low - level tasks which include steps . This 
dynamic . They can rotate , resize , change shape or ev have flow chart provides a top - down explanation of the algorithm 
vertices that appear and disappear in time . implemented . 

To support a non - rigid obstacle , its trajectory should be 25 The method starts with a sub - process 51 for initialization 
defined by the individual trajectories of its vertices . Back to of a repository called List of Potential Waypoints ( LPW ) . 
FIG . 2 , a static rectangle expands from t = T , to t = T2 in the The LPW stores both the waypoints ( nodes ) and the dis 
x direction , instead of moving as a rigid body like in FIG . 1 . tances needed to reach them from a source or starting point . 
In any case , it results in a geometrical figure in the 2D + t The waypoints will be traversed to expand the graph accord 
space called polytope 105 . 30 ing to a visibility graph algorithm . The LPW can be seen as 

Consequently , at any time “ t ” , the intersection of a hori a dynamic container continuously updated through the algo 
rithm execution . The LPW starts having a single waypoint zontal plane at Z = and a 2D + t polytope 105 represents a S ' , which coincides with the current vehicle position ( S ) . state of the obstacle at time t . For instance , the intermediate The method continues with a sub - process S2 for execut 

section in FIG . 2 corresponds to the state of the polygon at 35 ing a resolution strategy . After the initialization of the LPW , ET the algorithm is ready to expand the graph . In order to do so , FIG . 3 depicts an example of a 2D + t geometry referred to three different high - level resolution strategies that can be as velocity cone 104. According to assumption iv ) , the provided by the user depending on his preference . The 
vehicle travels at a constant speed v . At any time t , the locus execution of any of the three strategies will produce a 
of points that can be reached from a position P is a circle 40 visibility graph that will contain the most promising possible 
centered in P with a radius R = v * t . As time passes , the circle paths to reach the target . Such three strategies are further 
grows at a constant rate v . By extrapolating this concept to explained in connection with FIGS . 6-9 . 
a 2D + t space , the illustrated straight velocity cone 104 with Then , it follows a sub - process S3 for finding the shortest 
slope v and center in P is obtained , which is the geometric path . Once the visibility graph is built , the shortest path must 
surface representing all the possible moves from P. 45 be extracted . In general , any shortest path algorithm like 
The present disclosure uses an approach based on a new Dijkstra or A * can be suitable . However , the present dis 

visibility graph algorithm that presents some relevant closure preferably proposes an adapted visibility graph 
aspects for the identification of the shortest path . Each node algorithm . The adapted visibility graph is able to provide a 
of the graph is an abstract container that stores a 2D + t very simple graph with only one connection with the target . 
position that corresponds to a possible waypoint with coor- 50 Thus , by backtracking from the target , the shortest path can 
dinates ( x , y , t ) . This is a 2D + t point used for navigation be directly obtained . As a result , the adapted visibility graph 
purposes . Thus , in this document , the concept node is an algorithm increases efficiency because no additional graph 
abstract point of a graph and a waypoint is one of the ends search algorithm is needed . Furthermore , it guarantees the 
of a leg of a path . There is a straightforward relationship shortest path in the graph coincides with the shortest path in 
between both concepts , node and waypoints , in such a way 55 the environment . 
that they can be used almost interchangeably . Upon checking if the path that has been generated is 
A sub - graph is any edge of a visibility graph connecting considered acceptable from the vehicle's perspective , it 

a pair of nodes / waypoints that are mutually visible . follows a sub - process S4 for defining a path . Otherwise , the 
Another essential part of the proposed algorithm is the method jumps to sub - process S5 . 

concept of expanding the graph , which is the base for 60 As a result of the sub - process S4 for defining a path , if the 
building the visibility graph that is later processed by a shortest path is dynamically acceptable , the planned path 
simple backtracking algorithm , which outperforms Dijks- supersedes the previous one , which would have collided if 
tra’s algorithm . The task of expanding the graph involves not altered . 
progressively finding an interconnected set of waypoints that The sub - process S5 for changing strategy is carried out 
can be arranged in order to form feasible paths . As apparent , 65 when a previous strategy has provided a shortest path that is 
the fewer nodes and edges , the more efficient the algorithm considered unacceptable from the dynamic point of view . It 
will be . implies choosing the next strategy in a priority list defined 
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by the user . Then , the process restarts in order to find a comprises a comparison of the lengths of the shortest paths 
feasible solution with the new strategy . from the information contained in the corresponding LPW to 

Finally , if all strategies have been exhausted , a sub- select the most appropriate graph . 
process S6 comes into play for throwing an alert to the user FIG . 8 schematically illustrates an activity diagram for a 
in order to delegate the responsibility of deciding an alter- 5 third strategy choice referred to as a composite strategy 80 , 
native path . which assesses a set of constant speeds similar to the parallel 

Although the general view of the method has been con- strategy 70 , but in addition allows the vehicle to change its 
veniently contextualized , some tasks of the sub - processes speed at any waypoint , which allows smarter maneuvers and 
may require more explanations to be better appreciated . finer conflict avoidance . As shown in further examples of 
They will be provided in the next paragraphs . 10 FIG . 22A and FIG . 22B , the heuristic used by the visibility 
Resolution Strategies : graph helps reduce complexity of the composite strategy 80 . 
FIG . 6 illustrates a first strategy choice denoted simple The composite strategy 80 performs similar actions to the 

strategy 60. It uses a single constant vehicle's speed to parallel strategy 70 with little differences . There is also a first 
calculate a possible path . The speed is defined at the task 21 of getting a first potential waypoint of LPW . Then , 
beginning and maintained throughout the sub - graphs com- 15 rather than only one , several instances of a task 22a , 22b , 
posing the trajectory . It should be noted that the rest of the 22c of calculating interception polygons are executed for 
strategies share these tasks . The simple strategy sub - process each speed . Then several instances of a task 23a , 236 , 23c 
may encompass the following tasks : of creating a visibility subgraph follow which produce its 
A task 21 of getting a first potential waypoint of LPW . The own visibility subgraph 61a , 616 , 61c . This set of sub 

most promising node according to the heuristic ( called S ' ) is 20 graphs 61a , 616 , 61c is then included in the main graph 
identified from the LPW in order to be expanded . By according to task 24 of adding a subgraph to the main graph . 
construction , such node is always located at the first position By merging the sub - graphs and sharing a single LPW , the 
of the list . third strategy is able to consider speed changes from way 
A task 22 of calculating interception polygons , from the point to waypoint and provide an overall graph 62 . 

intersection of the obstacles ' polytopes and the velocity cone 25 FIGS . 9A - 9C graphically illustrate the behavior of each 
in the selected most promising node S ' . Interception poly- strategy over a simple environment . A continuous line 
gons represent the polygons that can be reached from S ' at represents sub - graphs traversed at a first speed , whereas a 
a specific time and speed . The task to calculate the inter- dotted line means that sub - graphs are traversed at a second 
ception polygons requires detailed explanations to be better speed . In the environment , between the source and the target 
understood . An activity diagram of this particular task is 30 there is an interception polygon 106 and a moving obstacle 
presented in FIG . 10 . 102 , the vehicle can travel using just two different speeds . 
A task 23 of creating a visibility subgraph . Once the most FIG . 9A is the resulting graph of applying the simple 

promising node S ' is selected and its interception polygons strategy at the first speed . FIG . 9B is the result of applying 
are calculated , a visibility subgraph 61 can be then obtained . the parallel strategy either using the first speed or the second 
An activity diagram of this particular task is presented in 35 speed . Finally , FIG . 9C is the result of applying the com 
FIG . 17 . posite strategy to find the best possible solution combining 
A task 24 of adding a subgraph to the main graph . This the two different speeds at each waypoint . In the latter cases , 

task , in conjunction with the previous task 23 , builds a more the velocity cone varies , so the resulting interception poly 
complex graph increasingly expanding it from the most gon 106 is different for each speed . As shown , at each 
promising nodes S ' and taking into account their interception 40 waypoint there may be two possible solutions corresponding 
polygons . In other words , a set of visibility sub - graphs are to the two different speeds . In this case , the difference 
progressively created and added to the overall visibility between the two possible solutions ( continuous and dotted 
graph each time a most promising node S ' is visited . There- lines ) at one waypoint lies on the time to arrive at the target 
fore , the outcome resulting from the execution of these tasks but not on the distance , because the distance in this case 
is an overall graph 62 made up by all the most promising 45 would be the same . Consequently , the composite solution 
conflict - free paths to arrive at the target point from the produces only one resulting graph whose edges are a com 

bination of the edges coming from moving at different 
FIG . 7 schematically illustrates an activity diagram for a speeds . 

second strategy choice referred to as a parallel strategy 70 . FIG . 10 shows in more detail a flow diagram of the steps 
The parallel strategy 70 considers a user - configurable set of 50 related to the task 22 of calculating interception polygons , 
vehicle constant speeds ( e.g. , maximum , average and mini- which is shared by the three resolution strategies . 
mum ) selectable to optimize the resulting path . This common task 22 of calculating interception polygons 
As shown in FIG . 7 , several instances of the simple is key because it is responsible for dealing with static and 

strategy 60a , 606 , 60c previously described run in parallel , dynamic ( moving or morphing ) obstacles and it compri 
each simple strategy instance 60a , 606 , 60c uses a different 55 five steps . 
speed and provides its overall graph 62a , 62b , 62c . By doing A first step 221 of defining a velocity cone from S ' . As 
so , computational efficiency can be increased . In addition , explained previously , the velocity cone represents the set of 
the parallel strategy 70 is able to avoid conflicts more points that the vehicle can reach from a point S ' when 
effectively because of the multiple speed feature . traveling at a constant speed . It is geometrically defined by 
Once the parallel execution of instances is finished , the 60 its apex : a waypoint S ' in the 2D + t space and its slope , which 

parallel strategy 70 further includes an additional task 25 of is the inverse of the vehicle's speed ( see FIG . 3 for more 
selecting a graph based on shortest distance . details ) . 
Once each simple strategy instance 60a , 606 , 60c has A second step 222 of intersecting the velocity cone with 

been executed , not only a set of resulting overall graphs 62a , vertices ' trajectories of polygons , that is with the corre 
62b , 62c is obtained but also an updated LPW in which , due 65 sponding polytopes . 
to the heuristic , the length of the shortest path is linked to the Once the polytope's edges intersection is completed , it 
final waypoint . Thus , this task 25 of selecting a graph follows a third step 223 of intersecting velocity cone with 
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polytopes ' lids . Having all the intersections for a certain The function f is defined as the difference of the squared 
obstacle computed , a 2D + t cloud of intersection points is distance from the point to the velocity cone apex and the 
obtained . squared distance of R?t ) . Squared distances provide an 

Then , common task 22 follows a fourth step 224 of easy - to - solve equation and do not alter the result . If the 2D + t 
projecting intersection points into the XY plane . By doing 5 trajectory of vertex V intersects with the velocity cone , the 
so , the dynamic problem is converted into a locally static function f will be equal to zero . This results in a second 
problem . This cloud of intersection points has been gener- order equation , which is not computationally complex to 
ated taking into account the speeds at which both the vehicle solve because it does not involve a numeric solving algo 
and the obstacle are moving . rithm : 

Then common task 22 follows the fifth step 225 of 10 fu = 6,2 + v , 2 - Vaircraft ? ) + 2 ( xqVx + Yo » , ) t + xo ? + 702 = 0 
defining polygons of intersection points . According to the 
present approach , many different degrees of freedom to When solving the equation , negative and imaginary times 
support morphing shapes of objects are allowed . Conse must be discarded , since they do not represent actual inter 
quently , the correct ordering of intersection points is hard to sections with the velocity cone . The solution is also dis 
discern . Therefore , it is needed to form simple , not self- 15 carded if it is outside the 2D + t segment defined by the initial 
intersecting , 2D polygons . This issue can be temporarily and final positions of the vertex . Aside from that , linear 
overcome by computing a bi - dimensional convex hull taking trajectories can intersect once or twice with the velocity 
the projected points resulting from step 224. The convex hull cone , depending on the relative velocities and the initial 
of a set of points is the intersection of all convex sets position of the vertex . Therefore , each obstacle can produce 
containing them . In other words , it is the smallest convex set 20 one or two interception polygons . 
containing said set of points . The intersection calculation defined herein ensures opti 

Advantageously , the path planning does not require poly mality in most of the cases because : 
gons to be convex . The creation of an interception polygon i ) 2D shortest paths must always cross the trajectory of the 

obstacle vertices , and ; by the convex hull is performed as a way of forming a ii ) the number of points that define interception polygons polygon from an unsorted set of points . In the case where the 25 are reduced . intersection points are sorted , the convex hull step 226 of 
FIG . 10 can be skipped . Step 226 ensures a safety distance Nevertheless , the case in which the vertex's speed is 
that prevents a violation of a no - fly zone ( NFZ ) . It provides higher than the vehicle's speed would need either subdivi 
offset distances useful to mitigate some uncertainties . For sion of polygon faces or a true 3D intersection method to 
instance , when the turn of an aircraft is not instant and 30 provide the full set of conic intersections . 
requires a transition time . This can be compensated using FIG . 13 shows a simplified version of a lid intersection for 
offset distances . a static obstacle's polytope and the velocity cone in the 2D + t 

The above steps show the transformation of a dynamic space as mentioned in the third step 223 of FIG . 10 . 
problem into a static one . Accordingly , a 2D scene is FIG . 14 shows the intersection points A , ' B'C ' on the XY 
generated in a 2D region with the source , the target and 35 plane corresponding to the example of FIG . 11 and to the 
motionless interception polygons . Visibility graph algo fourth step 224 of FIG . 10. In this case , the surface of the 
rithms for finding a conflict - free path can be applied to this velocity cone intersects the surface of the polytope in three 
scene . Once obtained , the conflict - free path can be converted different points , which correspond to its three vertices . FIG . 
to the 2D + t space . 14 represents the projection on the XY plane of : the cone's 

The second step 222 of FIG . 10 is further discussed in 40 base , the polytope’s vertices , the two polytope's lids and the 
intersected points . connection with FIGS . 11 and 12 . 

FIG . 11 depicts an example of intersection of an obstacle FIG . 15 shows the triangle of FIG . 11 , once projected on 
moving at constant speed between time to and t¡ in the the XY plane and once the convex hull is applied . The 
X - axis . Note that in general , each vertex may intersect with triangle ABC would be an interception polygon seen from 
the velocity cone at a different time . 45 the apex of the velocity cone at a fixed speed v . 

The geometric intersection of the velocity cone and an FIG . 16 shows an offset example with two original 
obstacle's polytope yields a 2D + t non - planar region whose interception polygons 106 in continuous line and the result 
projection on the XY plane geometrically corresponds to the ing offset polygon 107 in dotted line . As depicted in FIG . 10 , 
polygon that the vehicle must avoid to prevent a collision . an optional sixth step 226 of defining offset polygons may be 
FIG . 12 describes a simplified approach for calculating an 50 useful . Possible influence factors may be taken into account 

intersection in three dimensions . Although the actual inter- that make the vehicle enter in protected zones depending on 
section includes a set of interconnected three - dimensional the circumstances ( e.g. , position uncertainty , turn radius of 
( 3D ) conic curves , the problem may be addressed in a less the vehicle , wind , etc. ) . Accordingly , to prevent unexpected 
complex way as follows : the velocity cone is treated as a incursions , a safe buffer distance may be defined . Such 
circle in the XY plane that expands through time at a 55 buffer distance shifts the original interception polygons 
constant rate , whereas polygons are considered to be a set of boundaries to produce new and safer interception polygons . 
vertices moving along independent piece - wise linear trajec- In this example , due to the buffer distance , a buffer area 
tories . The equations resulting from this approach are set surrounds both the first and the second interception poly 
forth : gons , thereby producing a single offset polygon , which may 

60 help simplify computation . 
x ( t ) = Xo + vxt FIG . 17 further illustrates task 23 of creating a visibility 

graph . As taught , this is a common task to the three different 
y ( t ) = yo + Vyt resolution strategies , as previously explained . 

Even following the simple strategy of FIG . 6 , finding a 
R ( t ) = Vvehicle't 65 solution entails a complexity that would overwhelm any 

underpowered computer . Properly customizing a visibility 
f = r ( t ) + y ? ( t ) -R2 ( t ) graph algorithm along with the application of interception 

a 

m 



25 2 

US 11,262,764 B2 
13 14 

polygons allows lower requirements of computational Taking as input the endpoints T ' of the visible tangents , 
resources . This task 23 is split into several implementing which are potential waypoints , according to the heuristic , the 
steps . minimum cost ( in Euclidean distance ) that visiting each 

Firstly , there is a step 231 of checking the visibility of an waypoint may have is calculated . 
S'T segment , where S ' represents a node selected from the 5 Moving forward , a step 237 of inserting each T ' in the 
LPW as the most promising to reach the target . Hence , S ' is LPW as ordered by heuristic follows . Once the S'T'T lengths 
the node to be expanded . On the other hand , T represents the have been calculated , the corresponding T ' nodes are 
target waypoint . inserted in the LPW by comparing their associated heuristic 

Assuming the target T has not been reached , then the values with those that were previously added to the list . 
segment S'T is not collision - free , the algorithm jumps to a 10 Thus , the LPW will contain the list of all the potential 
step 233 of identifying intersected polygons . waypoints ordered according to the distance S'T'T . The 

Otherwise , if the S'T segment does not cross any inter- heuristic ensures that the actual cost of the S'T'T path is not 
ception polygon , the segment S'T is collision free , the overestimated because the actual distance can either be the 
diagram goes to step 232 of adding S'T to the graph . When length of the S'T'T path or greater , if there is an obstacle 
this step is reached , a step 236 of calculating the heuristics 15 between T ' and T. In the worst - case environment , all nodes 
of visible tangents assures that solving the current graph will would eventually be expanded ; whereas , in most of the provide an optimal solution without further expansion . cases , the expanding process can be significantly reduced . Back to step 233 of identifying intersected polygons , this When a potential waypoint from the LPW is obtained ( see is an efficiency - related step that reduces the complexity by 
selecting , and only paying attention to , those polygons that FIG . 6 , step 21 ) , the graph is expanded through the branch 
are obstructing the segment’s visibility . Note that intersected 20 that looks the most promising . 
polygons are crossed by the source - target line regardless of Note that using the heuristic criterion does not necessarily 
the polygon comes from an interception polygon or a NFZ . imply the right node is going to be expanded . In other words , 
As a consequence , filtering those obstacles whose inclu- using the heuristic does not discard any waypoints ; it merely 

sion in the graph is unnecessary dramatically improves prioritizes them . 
performance . Polygons that are not crossed by the source- Nevertheless , as a result of employing the heuristic , the 
target line can be disregarded . graph building process can be stopped whenever the target 

FIG . 18 depicts an example of application of step 233 . is reached for the first time . All the nodes that remain in the 
Step 233 speeds up finding a shortest path . Essentially , the LPW are guaranteed to have a greater cost , even if a straight 
algorithm is able to ignore three obstacles 106 ' and only path from them to the target was collision free . Therefore , 
considers one , namely the obstacle ( i.e. , interception poly- 30 the effective resulting graph size is much smaller , which 
gon ) 106 crossing the path to the target . The resulting path saves both memory and computer processing , especially in 
is shown in dotted line . Discarding the other obstacles large environments . The static - obstacles example in FIGS . 
greatly saves time and resources . For instance , in FIG . 18 , 20A - 20F may further explain the benefit of the heuristic . 
there are 18 potential waypoints ( 16 vertices plus source and A further step 238 of adding S'T ' segments to the graph 
target ) . A naïve visibility graph algorithm would have gen- 35 follows . All S'T ' segments are now collision free and can be 
erated a complete graph with 18 nodes and 71 edges , added to the graph . However , the algorithm checks if T ' has 
whereas the present approach is able to obtain the shortest been reached before through a shorter path , in which case 
path with only 4 nodes and 3 edges . Other algorithms that S'T ' segment is not added to the graph , reducing its 
considering all obstacles produce many unnecessary sub- complexity . The same logic applies to the insertion of points 
paths as depicted in continuous line . in the LPW . 

Another advantage of working with interception polygons Afterwards , there is a step 239 of removing S ' from the 
is its validity for static and dynamic obstacles . LPW . Having expanded the graph from node S ' , the node is 

Referring back to FIG . 17 , the next step is step 234 of removed from the list . For the next iteration , the LPW will 
finding common tangents ( S'T ' ) of intersected polygons contain the potential waypoints that have progressively 
from S ' . Instead of building a full visibility graph , obstacles emerged from S. 
are avoided by finding the common tangents between S ' and 45 Summarizing , the flowchart in FIG . 17 illustrates the rules 
the interception polygons . The use of common tangents also to find shortest paths in dynamic environments when mov 
produces a significant reduction in the size of the graph that ing obstacles traverse the environment and change their 
leads to lower computation times . boundaries and / or location . 
FIG . 19 shows an example of said reduction in complexity The main benefits and features of the algorithm are set 

of the graph even for a single obstacle achieved by using 50 forth below . 
common tangents ( dotted lines ) . Importantly , note that poly- The application of a customized visibility graph to the 
gon’s non - convexity does not exclude finding a valid path problem of obstacle avoidance in 2D + t dynamic envi 
because the shortest path is proved to consist of common ronments . Visibility graphs are generally constrained to 
tangents . static 2D configuration spaces and although 3D con 

Referring back to FIG . 17 , step 235 of checking visibility 55 cepts have been reviewed in literature , they usually 
of tangent segments ( S'T ' ) . T ' represents any of the endpoints need to rely on either cell discretization or mathemati 
of the tangent segments . If a tangent segment is visible , the cal optimization processes , which make the algorithm 
process can continue through step 236. If , however , a suboptimal in the former case and slower in the latter . 
tangent segment S'T ' intersects with any obstacle , the edge It may deal with different planning strategies regarding 
is not added to the graph and the obstacles involved and the the vehicle's speed , thus allowing speed changes as 
algorithm jumps to step 233. With reference to FIGS . well as vectoring to solve conflicts more efficiently . 
20A - 20F , this concept will be easily grasped . It is able to calculate optimal conflict - free paths in new 
A step 236 of calculating heuristics of visible tangents domains , with obstacles that modify their shapes during 

follows . When this step is reached , a set of segments are the path definition ( i.e. , morphing polygons ) . Unlike 
found which are tangent to those obstacles involved in the probabilistic , genetic , Voronoi and most planners , the 
conflict . The heuristic is a criterion used to order the LPW 65 algorithm consistently expands the graph with optimal 
in such a way that traversing the graph is more efficient than and valid sub - paths , thus reducing the trial - and - error 
doing it following an arbitrary order . iterative process and ensuring optimality . 
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Moreover , the algorithm is able to outperform competitors In FIG . 20E , the next step expands the graph from C 
by using a sophisticated combination of two novel pruning because the path S > F - C - D- > T is the shortest potential 
strategies plus a non - novel third one : the novel identification path that could be found . 
of intersected polygons ( step 233 ) and heuristic application Finally , depicted in FIG . 20F , the last step connects A to 
( step 236 ) and , the visibility graph ( step 234 ) . the target because A has lower heuristic than D and the 

Finally , the algorithm has a logic which is easy to imple- segment AT is collision - free . Since the graph is always 
ment , is fast and robust , and is hence appropriate for expanded from the most - promising node , expanding the 
real - time path planning in environments where obstacles can graph can be stopped once the target is reached . 
appear , disappear or change their intent at any time and a Having built the graph , existing algorithms would now 
quick response is critical ( e.g. , for UAVs ) . run a graph - based shortest path algorithm like Dijkstra's or 

Robustness and performance may be verified in three A * . However , by backtracking the path from the target the 
exemplary simulations . resulting path S- > B- > A > T in FIG . 20D can be obtained 
Tests : effortlessly , which further simplifies the problem to a great 

This section analyzes the solutions obtained in different extent . 
simulations carried out to assess the overall performance of FIG . 21 shows on the right the graph generated by the 
the proposed techniques . Parameters such as the time needed 15 algorithm , which only contains eight nodes and seven edges , 
to find a solution and the length of the shortest path are whereas on the left , a typical visibility graph would have 
presented . nine nodes and nineteen edges . 

Three environments were selected in order to better In order to establish a fair comparison between the present 
present the algorithm's performance and features . Each techniques and conventional ones , static objects should be 
environment presents some peculiarities and sums up how 20 treated as planar polygons . Moreover , the present algo 
the algorithm deals with them . All simulations were per- rithm's advantage over existing alternatives grows as the 
formed on an HP G62 laptop with an Intel® CoreTM i3 CPU complexity of the environment increases . The computation 
M 350 processor , 4 GB RAM and Ubuntu 14.04 . The code time for this environment is 4.19 msec . This time includes 
has been compiled in release version and the computation the intersection of the cones and the static obstacles , which 
times correspond only to the CPU time used by the algo- slows down the computation . 
rithm . Thus , the execution of the simulations was isolated In the background of the present document , the present 
from other processes running in the computer . proposal is classified into the roadmap methods , which 

First Environment : Two Static Obstacles implies that the computation time is strongly related to both 
FIGS . 20A through 20F illustrate a static - obstacles envi- the number of vertices V and edges E contained in the graph . 

ronment with invisible tangent . A sequence of performed Thus , a reduction in E and V translates into a significant 
steps is explained to define a route when a vehicle located at improvement in the computational performance . Conse 
a source travels to a target avoiding obstacles on its way . The quently , the customized optimizations reduce the number of 
heuristic is based on the shortest metric distance . vertices and edges and boost performance remarkably . 

The obstacles consist of a quadrilateral ABCD and a Second Environment : Three Dynamic Obstacles 
triangle EFG . Since both obstacles are static , they are This second environment may serve for multi - speed plan 
already interception obstacles . As FIG . 19 shows , given a 35 ning and is especially interesting because it shows the 
point P , there exist two tangents for each polygon . Therefore , planned path is straight at high speeds and it becomes longer 
there should be 2N tangents from P to a set of N polygons . as the vehicle slows down . At very low speeds , the straight 
However , as noted in dotted line in FIGS . 20A - 20B the path is also feasible . Note that although the obstacles may 
tangent SC is not visible because it intersects the triangle . appear at different times , their motion is known a priori . 
Thus , as depicted in FIG . 20B , only three edges , namely SE , 40 FIG . 22 depicts several sequences in an environment with 
SF and SB , are added to the graph in the first step . dynamic obstacles that move and modify their shapes . There 
From then on , the graph is built guided by the heuristic , are up to three obstacles 103a , 103b , 103c that start being 

step 236. Note that due to the heuristic and the algorithm's squares in the sequence they appear first , and later become 
logic , the graph built will not contain two edges leading to animated pentagons . All three obstacles 103a , 1031 , 1030 
the same node unless their path cost was the same . Other- follow a same motion pattern , but they appear at different 
wise , unnecessary edges like FB and BC would be added to times . 
the graph , hence worsening efficiency . In the sequence of time T1 , obstacle 103a appears and 
On the second step , the algorithm indicates the graph to remains being a square until the sequence of time T2 . Then , 

expand from node F because the path S > F ? T would be an extra vertex is created in the midpoint of one of its faces 
shorter than the path from B if there were no additional while a further obstacle 103b appears . The extra vertex of 
obstacles ( SBT ) . obstacle 103a moves outwards with a fast linear motion . 
However , the straight path from F to the target collides Finally , the vertex retreats slowly to its initial position and 

with the square obstacle and it turns out that node C has a the obstacle 103a disappears . The same motion procedure is 
higher ( worse ) heuristic than B , as depicted in FIG . 20C . observed in all the obstacles 103a , 103b , 103c on scene for 
Note that segment FB is not added to the graph because it simplicity . 
has already been reached through a shorter path . A summary of the experimental results is shown in the 

In FIG . 20D , the third step expands the graph from B table below . The three strategies were applied in the per 
because it has the lower heuristic from the LPW . formed simulations at different vehicle speeds : 

30 
a 

45 

50 

55 

Vertices 
in the Graph 

nodes 

Dist . - Straight dist . 
-O Straight dist . Speed Computing 

time ( ms ) scene set Strategy 

0 ( straight line ) 
0.01 3 

15 
15 
15 
15 
15 

Aw 0.23 4 
11 

< = 1.25 
1.3 
1.5 
2.0 
3.0 

0.71 
2.74 
2.92 
7.82 
2.52 

Single 
Single 
Single 
Single 
Single 

6.30 
0.06 
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-continued 
Vertices 
in the Graph 

nodes 

Dist . - Straight dist . -O Straight dist . Speed 
set 

Computing 
time ( ms ) scene Strategy 

15 
15 
15 

0 ( straight line ) 
O ( straight line ) 

0.23 

4.0 

{ 1.25 , 2.0 , 3.0 } 
{ 1.5 , 2 , 2.5 } 

0.73 
0.71 
7.34 

Single 
Parallel 

Composite 10 

10 

15 

a 

20 

35 

As explained , the first strategy , called single , internally generating , in a two dimensions plus time ( 2D + t ) space , 
creates a single directed graph that corresponds to the speed a velocity cone having a slope corresponding to a first 
at which the vehicle must move at all times . The shortest speed and an apex at the first source at an initial time , 
path identified in such graph is the resultant shortest lateral wherein the velocity cone represents a set of potential 
path . The first six cases in the table use this strategy . waypoints reachable from the first source for the 

In the second strategy , called parallel , the algorithm is vehicle moving at the first speed ; allowed to plan for N speeds , generates N separate graphs for each obstacle present in the 2D environment , wherein and chooses the optimal of the N constant speed optimal the obstacle is a static obstacle or a dynamic obstacle , solutions . Despite computation time being increased , it providing a polytope in the 2D + t space , wherein the provides a shorter path . polytope represents a 2D polygon modeling an obstacle Finally , the third strategy , called composite , allows the 
planner to change the vehicle's speed at every waypoint . at an initial time with its evolution over time ; 
Hence , a single graph is generated and the heuristic can obtaining one or more interception polygons by intersect 
prioritize nodes that correspond to different speeds . Conse ing the velocity cone with the polytope in the 2D + t 
quently , the last simulation from the table takes longer ( 7.34 25 space , thereby forming a non - planar surface , and pro 
msec ) than the third one ( 2.92 msec ) but much less than the jecting the non - planar surface on the 2D environment ; 
sum of three separate executions . In FIG . 22 , the worst case generating a first 2D scene comprising the one or more 
for computation time and travelled distance is shown . interception polygons to avoid ; 
FIG . 23 is a high - level block diagram of an example of a computing a visibility graph algorithm for the first 2D 

system that avoids static and dynamic obstacles and gener- 30 scene based on a first number of vertices associated 
ates a valid ( conflict - free ) path for a vehicle . The system with the one or more interception polygons and obtain 
includes a computing unit 2310 that comprises an internal ing a plurality of conflict - free sub - paths for the vehicle 
me ory 2306 and one or more processors 2304. The to traverse that avoids each obstacle ; 
memory 2306 stores the computer readable code , which is composing a valid path connecting the first source to the 
executed by the processor 2304 and performs the tasks target based on the plurality of conflict - free sub - paths ; 
required for the identification of conflict - free paths to safely producing instructions for guiding the vehicle among the 
reach the target . The system may include sensors 2308 that obstacles according to the valid path ; and detect the presence of and gather information about controlling movement of the vehicle in accordance with 
obstacles , mainly their positions and shape over time . In the instructions . 
turn , a navigation unit 2302 may intermittently obtain the 2. The method of claim 1 , wherein the visibility graph position of the vehicle to process instructions for guiding the algorithm applies a vertex reduction heuristic based on vehicle among the obstacles following the generated con 
flict - free path . checking visibility of a segment from the first source to the 

Assuming the vehicle is an aerial vehicle ( e.g. , a UAV ) , target among the one or more interception polygons . 
the computing unit 2310 may perform several processes . 3. The method of claim 2 , wherein the vertex reduction A 

heuristic is further based on : first process may relate to obtaining sensor tracks from 
different sensors . The computing unit 2310 may filter and computing a common tangent segment to each intercep 
merge these sensor tracks to create a unique fusioned track tion polygon being crossed and adding to a list end 
per flight . A second process may relate to obtaining fused points of the common tangent segment as potential 
tracks and the vehicle state to predict intruder trajectories 50 waypoints ; and 
and identify potential conflicts . A third process may be backtracking the potential waypoints from the target to 
required for safely reaching the target as already described the first source . 
in the present disclosure . This process can also be in charge 4. The method of claim 1 , wherein once a waypoint is 
of sending the new deconflicted trajectory to a control included in a sub - path , said added included waypoint 
system of the vehicle . 55 becomes a second source to construct a subsequent velocity 

Therefore , sensors should detect the presence of intruders cone until the target is reached . 
and / or obstacles and gather information from them . The 5. The method of claim 4 , further comprising : 
navigation unit 2302 is needed to obtain the status of the generating a second 2D scene according to the subsequent 
vehicle ( e.g. , velocity , altitude , position , etc. ) . A control velocity cone , wherein the subsequent velocity cone is 
system present in the vehicle is in charge of processing the 60 constructed having a slope corresponding to a second 
instructions for guiding the vehicle among the obstacles speed and an apex at the second source , the second 
following the generated conflict - free path . speed being different than the first speed . 
The invention claimed is : 6. The method of claim 5 , further comprising : 
1. A computer - implemented method for generating a path computing , in parallel , a visibility graph algorithm for the 

for a vehicle from a first source to a target within a 65 second 2D scene , thereby obtaining a plurality of 
two - dimensional ( 2D ) environment with one conflict - free sub - paths associated with the second 
obstacles , the method comprising : speed ; and 

40 

45 

a 

or more 
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composing an alternative valid path based on the plurality backtracking the potential waypoints from the target to 
of conflict - free sub - paths for the vehicle to traverse at the first source . 
the second speed . 13. The system of claim 10 , wherein once a waypoint is 

7. The method of claim 5 , further comprising : included in a sub - path , said added included waypoint computing , in parallel , a visibility graph algorithm for the 5 becomes a second source to construct a subsequent velocity 
second 2D scene , thereby obtaining a plurality of cone until the target is reached . conflict - free sub - paths associated with the first speed or 14. The system of claim 13 , wherein the processor is the second speed ; and further configured to generate a second 2D scene according composing an alternative valid path based on the plurality to the subsequent velocity cone , wherein the subsequent of conflict - free sub - paths , wherein at least one conflict- 10 velocity cone is constructed having a slope corresponding to free sub - path is traversed at the second speed . 

8. The method of claim 6 , further comprising selecting the a second speed and an apex at the second source , the second 
speed being different than the first speed . first speed or the second speed for the vehicle to traverse an 

obstacle according to a selection criterion based on at least 15. The system of claim 10 , wherein computing the 
one of the following : estimated arrival time , computation 15 visibility graph algorithm further comprises producing at 
time and traversed distance from the first source to the target . least one offset polygon , wherein the offset polygon is 

9. The method of claim 1 , wherein computing the visibil- produced by a buffer area surrounding at least one of the one 
ity graph algorithm further comprises producing at least one or more interception polygons present in the 2D scene . 
offset polygon , wherein the offset polygon is produced by a 16. The system of claim 10 , further comprising a plurality 
buffer area surrounding at least one of the one or more 20 of sensors for gathering information about obstacles present 
interception polygons . in the 2D environment , wherein the computing unit receives 

10. A system for generating a path for a vehicle from a the information from the plurality of sensors and provides a 
first source to a target within a 2D environment with one or polytope in the 2D + t space for each obstacle based on the 
more obstacles , the system comprising : received information . 

a computing unit comprising a memory storing computer 25 17. The system of claim 10 , further comprising a navi 
readable code and at least one processor to execute the gation unit to obtain the first source as a position of the 
computer readable code to cause the at least one vehicle and provide the obtained information to the com processor to : 

generate , in a 2D + t space , a velocity cone having a slope 18. A non - transitory computer program product for gen corresponding to a first speed and an apex at the first 30 erating a path for a vehicle from a first source to a target source at an initial time , wherein the velocity cone within a 2D environment with one or more obstacles , the represents a set of potential waypoints reachable from 
the first source for the vehicle moving at the first speed ; non - transitory computer program product comprising com 

provide a polytope in the 2D + t space for each obstacle puter code instructions that , when executed by a processor , 
present in the 2D environment , wherein the obstacle is 35 cause the processor to perform a method comprising : 
a static obstacle or a dynamic obstacle , wherein the generating , in a two dimensions plus time ( 2D + t ) space , 
polytope represents a 2D polygon modeling an obstacle a velocity cone having a slope corresponding to a first 
at an initial time with its evolution over time ; speed and an apex at the first source at an initial time , 

obtain one or more interception polygons by intersecting wherein the velocity cone represents a set of potential 
the velocity cone with the polytope in the 2D + t space 40 waypoints reachable from the first source for the 
thereby forming a non - planar surface , and project the vehicle moving at the first speed ; 
non - planar surface on the 2D environment ; for each obstacle present in the 2D environment , wherein 

generate a 2D scene comprising the one or more inter- the obstacle is a static obstacle or a dynamic obstacle , 
ception polygons to avoid ; providing a polytope in the 2D + t space , wherein the 

compute a visibility graph algorithm for the 2D scene 45 polytope represents a 2D polygon modeling an obstacle 
based on a first number of vertices associated with the at an initial time with its evolution over time ; 
one or more interception polygons and obtaining a obtaining one or more interception polygons by intersect 
plurality of conflict - free sub - paths for the vehicle to ing the velocity cone with the polytope in the 2D + t 
traverse that avoids each obstacle ; and space , thereby forming a non - planar surface , and pro 

compose a valid path connecting the first source to the 50 jecting the non - planar surface on the 2D environment ; 
target based on the plurality of conflict - free sub - paths , generating a first 2D scene comprising the one or more 

wherein the processor is further configured to produce interception polygons ( 106 ) to avoid ; 
instructions for guiding the vehicle among the one or computing a visibility graph algorithm for the first 2D 
more obstacles according to the valid path , the system scene based on a first number of vertices associated 
further comprising a control system on - board the 55 with the one or more interception polygons and obtain 
vehicle configured for controlling movement of the ing a plurality of conflict - free sub - paths for the vehicle 
vehicle in accordance with the instructions . to traverse that avoids each obstacle ; and 

11. The system of claim 10 , wherein the visibility graph composing a valid path connecting the first source to the 
algorithm applies a vertex reduction heuristic based on target based on the plurality of conflict - free sub - paths . 
checking visibility of a segment from the first source to the 60 19. The non - transitory computer program product of 
target among the one or more interception polygons . claim 18 , wherein the visibility graph algorithm applies a 

12. The system of claim 11 , wherein the vertex reduction vertex reduction heuristic based on checking visibility of a 
heuristic is further based on : segment from the first source to the target among the one or 

computing a common tangent segment to each intercep- more interception polygons . 
tion polygon being crossed and adding to a list end- 65 20. The non - transitory computer program product of 
points of the common tangent segment as potential claim 19 , wherein the vertex reduction heuristic is further 
waypoints ; and based on : 
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computing a common tangent segment to each intercep 

tion polygon being crossed and adding to a list end 
points of the common tangent segment as potential 
waypoints ; and 

backtracking the potential waypoints from the target to 5 
the first source . 

5 


