
(12) United States Patent
Thunemann et al.

US008782673B2

US 8,782,673 B2
Jul. 15, 2014

(10) Patent No.:
(45) Date of Patent:

(54) SHARING OF FIRST CLASS OBJECTS
ACROSS MULTIPLE INTERPRETED
PROGRAMMING LANGUAGES

(75) Inventors: Paul Z. Thunemann, Snoqualmie, WA
(US); Stephen L. Ray, Algona, WA (US)

(73) Assignee: The Boeing Company, Chicago, IL
(US)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 27 days.

(21) Appl. No.: 13/279,748

(22) Filed: Oct. 24, 2011

(65) Prior Publication Data

US 2013/O104103 A1 Apr. 25, 2013

(51) Int. Cl.
G06F 3/00 (2006.01)
G06F 9/44 (2006.01)
G06F 9/46 (2006.01)
G06F I3/00 (2006.01)

(52) U.S. Cl.
USPC ... 719/328; 717/115

(58) Field of Classification Search
USPC .. 717/115
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

6.256,772 B1* 7/2001 Apte et al. 717/1OO
2001/0037417 A1* 11/2001 Meyer 709,332
2002/0178141 A1* 1 1/2002 Kushnirskiy 707/1
2003/0149801 A1* 8/2003 Kushnirskiy ... 709,328
2012/0303704 A1* 11/2012 Schleifer et al. TO9.204

18

CoreObject

28, JRUBY-CORE ADAPTER FACTORY

OTHER PUBLICATIONS

European Search Report in European Application No. 12189820.9
(the European counterpart of the instant application), dated Mar. 13,
2013.
Orfali et al., “Instant CORBA. Passage.” Jan. 1, 1997, Wiley Com
puter Publisher, Canada, pp. 2-28.
Emmerich, W., “An overview of OMG/CORBA.”, Oct. 22, 1997, pp.
1 1-1/6.
Pyaraliet al., “An Overview of the CORBA Portable Object Adapter.”
Standard View, Assoc. for Computing Machinery, New York, vol. 6,
No. 1, Mar. 1, 1998, pp. 30-43.
http://www.mathworks.com/help/techdoc/matlab external/f43202.
html, Calling Functions in Shared Libraries: Calling C Shared
Library Functions from MATLAB(R), Retrieved Date: Jul. 18, 2011.
http://www.mathworks.com/help/techdoc/matlab external/f)8533.
html. Product Overview:: Using Java Libraries from MATLAB(R),
Retrieved Date: Jul. 18, 2011.

(Continued)

Primary Examiner — Li B Zhen
Assistant Examiner — Hui-Wen Lin
(74) Attorney, Agent, or Firm — Ostrager Chong Flaherty &
Broitman P.C.

(57) ABSTRACT

Systems and methods are disclosed for enabling users to write
Scripting code in a first Scripting language, and then use a
Second scripting language to call language constructs Written
in that first Scripting language. Functions, Class Definitions,
Class Instances, Modules and other language constructs are
treated as first-class objects that can be shared across the
different Scripting languages. The techniques disclosed
herein are also applicable to domain-specific languages. As
part of the methodology, a respective underlying representa
tion of each of these object types is designed as an interface
and then that interface is implemented in each Scripting lan
guage. In addition, code is written in each scripting language
implementation to allow the latter to use the interface to
represent a Function, Class, or other language construct.

9 Claims, 2 Drawing Sheets

RubyObject

US 8,782,673 B2
Page 2

(56) References Cited

OTHER PUBLICATIONS

http://www.mathworks.com/help/techdoc/matlab external/f4873.
html. Creating and Using Java Objects:: Using Java Libraries from
MATLAB(R), Retrieved Date: Jul. 18, 2011.
http://www.mathworks.com/help/techdoc/matlab external/f4863.
html, Bringing Java Classes and Methods into MATLAB(R)
Workspace, Retrieved Date: Jul. 18, 2011.

http://www.mathworks.com/help/techdoc/matlab external/bp
kqh7.html. External Interfaces (MATLAB(R)). Retrieved Date: Jul.
18, 2011.
http://jakarta.apache.org/bsf, Jakarta BSF Bean Scripting Frame
work. The Apache Jakarta Project, Retrieved Date: Aug. 2, 2011.
http://download.oracle.com/javase/6/docs/technotes guides/script
ing programmer guide/index.html, Java Scripting Programmers
Guide, Copyright (C) 1993, 2011.

* cited by examiner

US 8,782,673 B2 U.S. Patent

US 8,782,673 B2 Sheet 2 of 2 Jul. 15, 2014 U.S. Patent

?)

US 8,782,673 B2
1.

SHARING OF FIRST CLASS OBJECTS
ACROSS MULTIPLE INTERPRETED
PROGRAMMING LANGUAGES

BACKGROUND

The present disclosure relates generally to interfaces which
allow the use in one interpreted programming language of
language constructs written in a different interpreted pro
gramming language. In particular, this disclosure relates to
interfaces which would allow a user of a high-level script to
integrate lower-level Scripts written in different scripting lan
guages.

Compiled languages cannot be used interactively. The
standard use case is to write the code, compile the code, and
then run the code. This is a good paradigm for a Software
developer who is writing an application, but it is not as useful
for an engineer or mathematician who needs to explore and
solve a problem.

Interpreted languages can be used interactively. An engi
neer can have a “prompt where he/she types code and the
code is interpreted and then executed while the underlying
application is running. Examples of interpreted languages
include Python, Ruby, etc.

Scripting languages are added to applications to allow a
user to drive the application from a command prompt or text
file. Interpreted languages can be used as Scripting languages
and hereinafter this disclosure will refer to interpreted lan
guages that are used for Scripting as 'scripting languages'.

Python is an interpreted language. It has several implemen
tations, including CPython and Jython. CPython is written in
Clanguage and is commonly called Python. Jython is written
in Java.

Java is a compiled language that runs on a Virtual Machine.
There are several Scripting languages that are built on top of
the Java Virtual Machine. These are commonly referred to as
J-Based scripting languages. (Examples include Jython,
JRuby, Groovy and Rhino.)
A proprietary J-based scripting language is known that is a

domain-specific language designed for geometry manipula
tion and meshing (creating discrete representations). Also
known is an application written in Java for geometric con
struction, analysis and manipulation, which is designed to be
Scripted. The underlying Java code defines many geometry
operations. Engineers can then use these scripts to make use
of specific geometry operations to solve their engineering
problem. These Scripts represent knowledge capture of the
engineering process. There is a strong need to reuse these
scripts. There is a need to be able to drive the aforementioned
geometric construction application using these preexisting
proprietary language scripts.

Consider a high-level engineering process that consists of
several lower-level engineering processes. Each lower-level
process may have already been written. An engineer needs to
be able to write a high-level script that integrates the lower
level scripts. Since these scripts may be written in more than
one scripting language, a way is needed to easily share the
functions, classes, instances and objects that were created in
the different Scripting languages.

It is currently possible in existing scripting environments to
share data between Scripting languages, but to do so takes
programming skill as well as knowledge of the underlying
Java language. A solution to this problem should be designed
for engineers, not for application developers, so the Solution
should not require additional programming/software devel
opment on the engineer's part.

10

15

25

30

35

40

45

50

55

60

65

2
Thus there is a need for a methodology that allows different

engineers to program in different Scripting languages and
then share the code they write across these Scripting lan
guages without considering issues of the underlying language
implementations. Preferably the solution will also include
domain-specific languages.

SUMMARY

Systems and methods are disclosed for enabling users to
write Scripting code in a first Java-based scripting language,
Such as Jython, JRuby, and Matlab, and then use a second
Java-based scripting language to call language constructs
written in that first Scripting language. Language constructs
include, for example, Lists, Sets, Maps, Functions, Class
Definitions, Class Instances and Modules of code. For
example, the disclosed methodology enables an engineer to
write a function in one Scripting language and call it from
another scripting language. The techniques disclosed herein
are also applicable to domain-specific languages.

In accordance with the embodiments disclosed hereinafter,
Functions, Class Definitions, Class Instances, Modules and
other language constructs are treated as first-class objects that
can be shared across the different Scripting languages. In
computing, a first-class object is an entity that can be con
structed at run-time, passed as a parameter or argument,
returned from a Subroutine, or assigned into a variable. As
part of the methodology disclosed herein, a respective under
lying representation of each of these object types is designed
as a Java interface and then that interface is implemented in
each Scripting language. In addition, code is written in each
scripting language implementation to allow the latter to use
the Java interface to represent a Function, Class, or other
language construct.
The methodology disclosed herein allows different script

ing languages to interact with each other in a way that is
natural for the given language so that the engineer using that
Scripting language need not consider or have any expertise in
or knowledge of other scripting languages when they write
their scripts.
More specifically, one aspect of the invention is a method

of sharing language constructs among different Scripting lan
guages comprising: (a) defining a core application program
ming interface which is language-neutral relative to a plural
ity of scripting languages, the core application programming
interface comprising a respective core interface for each of a
plurality of types of language constructs; (b) calling a lan
guage construct of a type written in a first Scripting language,
the call being made by a language construct of the type
Written in a second Scripting language; (c) creating an
instance of a core interface that handles language constructs
of the type; (d) redirecting the call to the instance of the core
interface; and (e) redirecting the call received by the instance
of the core interface to the language construct of the type
written in the first Scripting language.

Another aspect of the invention is a system that enables
language constructs to be shared among different Scripting
languages, the system comprising a core application pro
gramming interface which is language-neutral relative to a
plurality of Scripting languages, the core application pro
gramming interface comprising a respective core interface for
each of a plurality of types of language constructs, and a
processor programmed to execute operations (b) through (e)
set forth in the preceding paragraph in response to a user
command.
A further aspect of the invention is a method of making a

call to a language construct, wherein the call is written in a

US 8,782,673 B2
3

first Scripting language while the language construct is writ
ten in a second Scripting language, comprising: (a) defining a
core application programming interface which is language
neutral relative to the first and second scripting languages, the
core application programming interface comprising a respec
tive core interface for each of a plurality of types of language
constructs; (b) creating first and second core interface
objects; (c) creating a first language adapter object that redi
rects the call to the first core interface object; (d) creating a
language construct object written in the second Scripting lan
guage; (e) creating a first core adapter object that redirects the
call received by the first core interface object to the language
construct object, (f) creating a second language adapter
object that returns to the second core interface object a result
produced by the language construct object; and (g) creating a
second core adapter object that redirects the returned results
received by the second core interface object to a language
construct object written in the first Scripting language.

Yet another aspect of the invention is a system for making
a call to a language construct, wherein the call is written in a
first Scripting language while the language construct is writ
ten in a second Scripting language, the System comprising a
core application programming interface which is language
neutral relative to the first and second scripting languages, the
core application programming interface comprising a respec
tive core interface for each of a plurality of types of language
constructs, and a processor programmed to execute opera
tions (b) through (g) set forth in the preceding paragraph in
response to a user command.

Other aspects of the invention are disclosed and claimed
below.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a diagram showing an adapter pattern for use
when a Python user calls a function (named DSLFunction)
written in a domain-specific language by means of a Core
API.

FIG. 2 is a diagram representing object-oriented code for
facilitating the sharing of language constructs between a plu
rality of scripting languages in accordance with one embodi
ment.

Reference will hereinafter be made to the drawings in
which similar elements in different drawings bear the same
reference numerals.

DETAILED DESCRIPTION

In the detailed disclosure that follows, the terms interface,
Class definition, Class Instance, application programming
interface and adapter will have the following meanings:

Interface: A set of related methods (just the signatures of
the methods, not the implementations).

Class Definition: A set of methods implemented together.
A class definition may implement one or more interfaces. The
implementation often defines some data that is encapsulated
and acted on by the implemented methods.

Class Instance: A class definition can be instantiated mul
tiple times. Each instantiation of the class definition is called
a class instance.

Application Programming Interface (API): A set of inter
faces and class definitions with a set of behaviors associated
with those interfaces and those classes.

Adapter: A design pattern that allows an existing API to use
an existing class definition that is not part of the API. This is
commonly done when the class definition it notionally the
same as some interface or class that is in the API. The adapter

10

15

25

30

35

40

45

50

55

60

65

4
is a new class definition that conforms to the existing API. The
existing class definition (which is not in the API) is called the
adaptee. The adapter contains the adaptee and implements an
interface in the existing API (or extends a class in the existing
API) by making use of the adaptee.
To understand the methodology disclosed hereinafter, it is

useful to look at how two scripts interact with each other when
they are written in the same language. First consider a simple
Script written in the Python language that defines a function
which adds two numbers and returns the result. Then consider
a second script that uses the first script to perform the addition
operation.

Here is the code for the first script; it is written in a file
called pyExample.py:

. start example.py---------------

def add(a,b):
return a + b

. end example.py---------------

And here is the code of a second script that uses the first script:

.start useBxample.py---------------

from example import add
print 3 + 4 = ', add(3,4)

.end useBxample.py---------------

The result of running this script is that it will print: 3+4-7
This disclosure adopts the Python idiom and will herein

after refer to each script written in its own file as a “module”.
Python's import statement allows one module to access a
function written in another module. So, in this case, the use
Example.py module imports the example.py module, and
gets the function called “add' from that module. It then makes
use of that function by adding the numbers 3 and 4. Note that
the import statement is searching for “add” which is in
“example” and to do that, it searches the directories in the
Python path for files that have the name “example.py” (and.
pyo, pyc, etc.), it runs “example.py', which results in the
creation of a module object, and then it looks in the module
for something called “add'.

It would be desirable to introduce additional functionality
to the Jython language that will allow a user to replace the
example.py file with some other file written in a different
Scripting language. Here is an example of a file written in a
domain-specific language:

.start example.DSL--------------

function add(a as double, b as double)
return a + b

end function
.end example.DSL--------------

The goal is to be able to put example.DSL in the Python
path instead of example.py and then have the module useEX
ample.py script work without modification. The methodol
ogy disclosed hereinafter allows that to happen.

Here is a list of language constructs that are typical across
most procedural languages:
Data Types:

Primitives (including int, double, char, short, float, byte,
and language specific constructs)

Strings
Lists
Dictionaries (sometimes called maps)

US 8,782,673 B2
5

Sets (commonly implemented as the keys of a dictionary,
only available in some languages)

Tuples (a fixed list, only some languages)
Arrays

Language Types:
Functions
Class Definitions
Class Instances
Methods (i.e., methods of a class instance)
Modules
The methodology disclosed herein enables a user to share

each of these types of constructs across different languages.
To do this, first define an API (written in Java) which is
language-neutral relative to each of a plurality of Scripting
languages. This API consists of one interface for each Data
Type and each LanguageType (i.e., for each type of language
construct). These language construct interfaces will be
referred to herein as the Core interfaces and they will be
named such that word “Core' is prepended to the type (e.g.,
CorePrimitive, CoreString, CoreFunction, CoreClassDefini
tion, etc.). In addition, all of the interfaces making up the Core
will inherit from a common interface called CoreObject.
An exemplary interface for CoreFunction is the following:

f:
* An interface to generically represent a function.

public interface CoreFunction extends CoreCobject {
f::::::
* Call the function.
*/
CoreObject exec(CoreObject... args);
/....

The methodology disclosed herein makes extensive use of
the adapter pattern to implement and use the Core interfaces.
For each language, two adapters need to be implemented for
each type of language construct.

Consider a situation where a call is made by a computer
user to the Core that relates to a specific type of language
construct and a specific scripting language. The computer
programming will have available an implementation of that
language construct type in the API of that specific scripting
language and will have an interface for that type in the Core
API. The first of the two adapters wraps the implementation
of the language construct type in the specific scripting lan
guage so that the first adapter conforms to the Core API and
utilizes the language implementation. The second adapter
does the opposite and wraps the Core interface of that lan
guage construct type so that it conforms to the API of the
specific scripting language but utilizes the instance of the
Core interface.
More specifically, for each type of language construct, one

takes an existing language class definition and the corre
sponding existing Core interface and then writes a new class
definition that implements that Core interface (hereinafter
called a Core Adapter) and the other adapter allows the Core
interface for that language construct type to be used within the
API of the language implementation (hereinafter called a
Language Adapter).

For example, consider the Jython language and consider
the Function type. The API for the implementation of the
Jython language implementation has a class definition called
PyFunction. A user would need to write a Core Adapter that
implements the CoreFunction interface and redirects method
calls made upon it to method calls in PyFunction. The user

10

15

25

30

35

40

45

50

55

60

65

6
also needs to write a Language Adapter that emulates a
Python Function and redirects all calls to the CoreFunction
that is being wrapped.

FIG. 1 shows an adapter pattern for use when a Python user
calls a function 14 (named DSLFunction) written in a
domain-specific language. The Python interpreter determines
that a call should be made. It executes the call in PyWrapped
Function 10, which is a Language Adapter, and redirects the
call to the CoreFunction interface 12, which in this case
happens to be a CoreFunction FromDSL implementation.
This CoreFunction FromDSL implementation 12 is a Core
Adapter that redirects the call to the DSLFunction. DSLFunc
tion is part of the domain-specific language implementation
and knows how to internally resolve the method.

For example, here is how a DSL function is defined in a text
file:

function add(a as double, b as double)
return a + b

end function

The DSL interpreter will interpret that text and create a DSL
function instance. The DSL function can normally be called
from the DSL language like this:

The DSL interpreter will interpret the above text by looking
up the existing DSL Function instance called “add. It will
pass into that DSL Function instance, two inputs (1.0 and
2.0). The DSL Function instance knows internally how to
“resolve the function'. It will execute the “a+b', which in this
case is “1.0+2.0 and it will return the output, 3.0.
So when this same function is called from Python, the

system converts from Py objects to Core objects and then
from Core objects to DSL objects and then calls the “real'
function, which knows how to take those inputs and execute
the code that was used to define the function.

An exemplary Language Adapter for converting a Python
function to a Core function may take the following form:

public class PyWrappedFunction extends PyObject {
CoreFunction function;
public PyWrappedFunction(CoreFunction fen) {

function = fon;

(a)Override
public PyObject call (PyObject args(), String keywords) {
List <CoreObject> veArgs = new ArrayList <CoreObject>();

for (PyObject arg: args) {
CoreObject veArg = Jython AdapterFactory.from Jython (arg);

veArgs.add(veArg);

CoreObject result = function.exec(ve ArgS. to Array (new
CoreObjectIO)

);
return Jython AdapterFactory.toJython (result);

US 8,782,673 B2
7

The Language Adaptor lets a Python function masquerade as
a Core function.
An exemplary Core Adapter for converting a Core function

to a Python function has the following form:

public class CoreFunctionImplemented InPython implements
CoreFunction {

private PyObject pycallable;
(a)Override
public CoreCobject exec(CoreCobject... args) {

PyObject pyargSpyargs = new PyObjectargs.length;
int start = 0:

int i =start; i < args.length + start; i++) {
PyObject pyobj=Jython AdaptorFactory.toJython (argsi);
pyargsi = pyob;

f: :

* In
in
* the user-supplied function and generate a meaningful stacktrace in
* the error message. (This allows for cross-language tracebacks.)
*
PyObject result = pycallable. call (pyargs);

return Jython AdaptorFactory.from Jython (result)

practice, there should be additional code that will trap any errors

The Core Adaptor lets a Core function masquerade as a
Python function.
To implement each adapter, the user needs to be able to

create adapters for one API based on existing objects from
another API. To support this, each scripting language must
implement an AdapterFactory class with two methods. One
method converts objects for the Core API to the Language
API and the other method converts objects from the Language
API to the Core API. The factory may create new instances of
adapters or may make use of caching so that it can reuse
adapters. Note the case where a Python function is wrapped
into a Core function and then needs to be converted back into
the Python language API. In this case, one does not want to
create an adapter, but instead should retrieve the underlying
Python function and return it.

Elaborating on the situation depicted in FIG. 1, the DSL
function takes DSL objects as input and returns a DSL object
as output. The Core function takes Core objects as input and
returns a Core object as output. The Python function takes Py
objects as input and returns a Py object as output.

For Python to call the DSL function, we need a Python
function that adapts a Core function that adapts a DSL func
tion. So the Python function takes Py objects as input. These
Py objects are converted into Core objects and the Core func
tion is called with those Core object inputs. This Core func
tion takes the Core object inputs and converts them into DSL
object inputs and calls the “real' DSL function. ADSL object
is returned as the result. The Core function that is adapting the
DSL function converts that returned DSL object into a Core
object and returns the Core object. Finally, the Python func
tion takes the returned Core object and converts it into a
Python object.
As used herein, "converting” means that the AdapterFac

tory is called so that the correct adapters can be created or
retrieved.

It should be appreciated that the Core interfaces are not
limited to those which facilitate the translation of DSL objects
into Python objects and the translation of Python objects into
DSL objects, as depicted in FIG.1, but rather can be expanded
to include Core interfaces for facilitating the sharing of
objects written in other scripting languages. FIG. 2 is a dia
gram which shows a class CoreCobject which can be extended

10

15

25

30

35

40

45

50

55

60

65

8
to facilitate the sharing of language constructs written in three
different Scripting languages: Jython, JRuby and a domain
specific language.

In accordance with the scheme depicted in FIG. 2, the Core
API (class CoreCbject and extensions) enables a Jython user
to access a language construct written in either JRuby or a
DSL, enables a JRuby user to access a language construct
written in either Jython or a DSL; and enables a DSL user to
access a language construct written in either Jython or JRuby.

For example, to enable a Jython user to access a language
construct written in a DSL, a first instance of a Jython Lan
guage Adaptor (created or retrieved by the Jython-Core
AdapterFactory 24) converts a first instance of a PyObject 16
into a first instance of a CoreObject 18; and then a first
instance of a DSL-Core Adaptor (created or retrieved by the
DSL-Core AdapterFactory 26) converts that first instance of a
CoreCbject 18 into a first instance of a DSLObject 20. Sub
sequently, a first instance of a DSL Language Adaptor (cre
ated or retrieved by the DSL-Core AdapterFactory 26) con
verts a second instance of a DSLObject 20 into a second
instance of a CoreCobject 18; and then a first instance of a
Jython-Core Adaptor (created or retrieved by the Jython-Core
AdapterFactory 24) converts that second instance of a Core
Object 18 into a second instance of a PyObject 16.

Similarly, to enable a JRuby user to access a language
construct written in a DSL, a first instance of a JRuby Lan
guage Adaptor (created or retrieved by the JRuby-Core
AdapterFactory 28) converts a first instance of a RubyObject
22 into a third instance of a CoreCobject 18; and then a second
instance of a DSL-Core Adaptor (created or retrieved by the
DSL-Core AdapterFactory 26) converts that third instance of
a CoreCobject 18 into a third instance of a DSLObject 20.
Subsequently, a second instance of a DSL Language Adaptor
(created or retrieved by the DSL-Core AdapterFactory 26)
converts a fourth instance of a DSLObject 20 into a fourth
instance of a CoreCobject 18; and then a first instance of
JRuby-Core Adaptor (created or retrieved by the JRuby-Core
AdapterFactory 28) converts that fourth instance of a Core
Object 18 into a second instance of a RubyObject 22.

In a similar manner, a DSL user can import language con
structs written in either the Jython or JRuby scripting lan
guage; a JRuby user can import language constructs written
in the Jython Scripting language; and a Jython user can import
language constructs written in the JRuby Scripting language
using the Core API. As previously mentioned, the Core API
includes a respective Core interface for each language con
struct, which Core interfaces inherit from a common interface
called CoreCbject.
Some languages are case sensitive and other languages are

not. Therefore the interfaces for Dictionary and Class
Instances do not do lookup by String. Instead, a separate
interface is implemented that defines a key called a CoreKey.
The embodiment includes implementations of CoreKey that
are case sensitive and others that are case insensitive.
To enable the system described above, each language must

Support the concept of an import hook. The term import hook
comes from the Python community and is a mechanism for
redefining the function that gets called when an import is
performed. The import function needs to be enhanced so that
it can handle modules that were written in other languages.
The common convention is to use the extension of the file
name to determine the language that should be used to inter
pret the file. Once the file is interpreted, it should produce
some Module or Dictionary representation of the contents of
the file. That representation can then be used to create a
CoreModuleAdapter that can be wrapped into a module.

US 8,782,673 B2
9

Note that if import hooks are not supported by the target
language, then the general mechanism will still work cor
rectly, but it may require Some modification of the calling
Script so that a function call is made to import the script rather
than a more natural import statement.

Also note that some languages cache imported modules so
that they do not have to be interpreted again (also, the class
definitions do not have to be redefined). When an import
occurs in one language, the implementer of the embodiment
needs to be careful to cache the imported module into each of
the Supported languages.

The above-described methodology provides cost savings
by allowing engineers to share their analysis codes easily.
Different applications written in different languages can be
quickly integrated. There is another cost savings when engi
neers are able to write code in languages with which they are
comfortable. They do not need to spend time training in a new
language. There is also a cost avoidance. By making it easier
to share code, there is a much better chance of getting code

U.S.

While the invention has been described with reference to
various embodiments, it will be understood by those skilled in
the art that various changes may be made and equivalents may
be substituted for elements thereof without departing from
the scope of the invention. In addition, many modifications
may be made to adapt a particular situation to the teachings of
the invention without departing from the essential scope
thereof. Therefore it is intended that the invention not be
limited to the particular embodiment disclosed as the best
mode contemplated for carrying out this invention.
The method claims set forth hereinafter should not be

construed to require that all operations of the method be
performed in the order in which they are recited.

The invention claimed is:
1. A method of sharing language constructs among differ

ent Scripting languages comprising:
defining a core application programming interface which is

language-neutral relative to a plurality of Scripting lan
guages, said core application programming interface
comprising a respective core interface for each of a
plurality of types of language constructs;

defining a respective language adapter and a respective
core adapter for respective types of a plurality of types of
language constructs for each of a plurality of Scripting
languages, wherein said respective language adapter
converts an object written in a respective scripting lan
guage into an object written in the language of the core
application programming interface, and said respective
core adapter converts an object written in the language
of the core application programming interface into an
object written in the respective scripting language;

calling a first language construct of a first type written in a
first Scripting language, the call being made by a lan
guage construct of said first type written in a second
Scripting language;

creating or retrieving a first instance of a first language
adapter that can convert an object written in said second
Scripting language into an object written in the language
of the core application programming interface;

creating or retrieving a first instance of a first core interface
that handles language constructs of said first type;

redirecting the call to said first instance of said first core
interface by way of said first instance of said first lan
guage adapter;

creating or retrieving a first instance of a first core adapter
that can convert an object written in the language of the

10

15

25

30

35

40

45

50

55

60

65

10
core application programming interface into an object
written in said first Scripting language;

redirecting the call received by said first instance of said
first core interface to said first language construct of said
first type written in said first scripting language by way
of said first instance of said first core adapter;

creating a first instance of said first language construct of
said first type written in said first Scripting language in
response to the call;

returning a result of said first instance of said first language
construct of said first type written in said first scripting
language;

creating or retrieving a first instance of a second language
adapter that can convert an object written in said first
Scripting language into an object written in the language
of the core application programming interface;

creating or retrieving a second instance of said first core
interface;

redirecting the returned result to said second instance of
said first core interface by way of said first instance of
said second language adapter;

creating or retrieving a first instance of a second core
adapter that can convert an object written in the language
of the core application programming interface into an
object written in said second scripting language; and

redirecting the returned result received by said second
instance of said first core interface to said first language
construct of said first type written in said second Script
ing language by way of said first instance of said second
core adapter.

2. The method as recited in claim 1, wherein said first type
of language construct is selected from the following set of
types: primitives, Strings, lists, dictionaries, sets, tuples,
arrays, functions, class definitions, class instances, methods
and modules.

3. The method as recited in claim 1, wherein said first and
second scripting languages are J-based.

4. The method as recited in claim 1, further comprising:
calling a language construct of a second type written in a

third Scripting language, the call being made by a lan
guage construct of said second type written in said sec
ond Scripting language;

creating or retrieving a first instance of a second core
interface that handles language constructs of said second
type;

creating or retrieving an instance of a third language
adapter that can convert an object written in said second
Scripting language into an object written in the language
of the core application programming interface;

redirecting the call to said first instance of said second core
interface by way of said instance of said third language
adapter;

creating or retrieving an instance of a thirdcore adapter that
can convert an object written in the language of the core
application programming interface into an object writ
ten in said third scripting language; and

redirecting the call received by said first instance of said
second core interface to said language construct of said
second type written in said third Scripting language by
way of said instance of said third core adapter.

5. The method as recited in claim 4, further comprising:
creating an instance of said language construct of said

second type written in said third Scripting language in
response to the call;

returning a result of said instance of said language con
struct of said second type written in said third scripting
language;

US 8,782,673 B2
11

creating or retrieving an instance of a fourth language
adapter that can convert an object written in said third
Scripting language into an object written in the language
of the core application programming interface;

creating or retrieving a second instance of said second core
interface;

redirecting the returned result to said second instance of
said second core interface by way of said instance of said
fourth language adapter,

creating or retrieving an instance of a fourth core adapter
that can convert an object written in the language of the
core application programming interface into an object
written in said second Scripting language; and

redirecting the returned result received by said second
instance of said second core interface to said language
construct of said second type written in said second
Scripting language by way of said instance of said fourth
core adapter.

6. The method as recited in claim 1, further comprising:
calling a second language construct of said first type writ

ten in said first scripting language, said first and second
language constructs of said first type written in said first
Scripting language being different from each other, the
call being made by a second language construct of said
first typewritten in a second scripting language, said first
and second language constructs of said first type written
in said second Scripting language being different from
each other;

creating or retrieving a second instance of said first lan
guage adapter, a third instance of said first core interface,
and a second instance of said first core adapter;

redirecting the call to said third instance of said first core
interface by way of said second instance of said first
language adapter;

redirecting the call received by said third instance of said
first core interface to said second language construct of
said first type written in said first scripting language by
way of said second instance of said first core adapter;

creating a second instance of said first language construct
of said first typewritten in said first scripting language in
response to the call;

returning a result of said second instance of said first lan
guage construct of said first type written in said first
Scripting language;

creating or retrieving a second instance of said second
language adapter, a fourth instance of said first core
interface, and a second instance of said second core
adapter,

redirecting the returned result to said fourth instance of
said first core interface by way of said second instance of
said second language adapter, and

redirecting the returned result received by said fourth
instance of said first core interface to said second lan
guage construct of said first type written in said second
Scripting language by way of said second instance of
said second core adapter.

7. A system that enables language constructs to be shared
among different Scripting languages, said system comprising:

a class definition defining a core application programming
interface which is language-neutral relative to a plurality
of Scripting languages, said core application program
ming interface comprising a respective core interface for
each of a plurality of types of language constructs;

respective class definitions defining a respective language
adapteranda respective core adapter for respective types
of a plurality of types of language constructs for each of
a plurality of Scripting languages, wherein said respec

5

10

15

25

30

35

40

45

50

55

60

65

12
tive language adapter converts an object written in a
respective scripting language into an object written in
the language of the core application programming inter
face, and said respective core adapter converts an object
written in the language of the core application program
ming interface into an object written in the respective
Scripting language; and

a processor programmed to execute the following opera
tions in response to a user command:

calling a first language construct of a first type written in a
first Scripting language, the call being made by a lan
guage construct of said first type written in a second
Scripting language;

creating or retrieving a first instance of a first language
adapter that can convert an object written in said second
Scripting language into an object written in the language
of the core application programming interface;

creating or retrieving a first instance of a first core interface
that handles language constructs of said first type;

redirecting the call to said first instance of said first core
interface by way of said first instance of said first lan
guage adapter;

creating or retrieving a first instance of a first core adapter
that can convert an object written in the language of the
core application programming interface into an object
written in said first Scripting language;

redirecting the call received by said first instance of said
first core interface to said first language construct of said
first type written in said first scripting language by way
of said first instance of said first core adapter;

creating a first instance of said first language construct of
said first type written in said first scripting language in
response to the call;

returning a result of said first instance of said first language
construct of said first type written in said first scripting
language;

creating or retrieving a first instance of a second language
adapter that can convert an object written in said first
Scripting language into an object written in the language
of the core application programming interface;

creating or retrieving a second instance of said first core
interface;

redirecting the returned result to said second instance of
said first core interface by way of said first instance of
said second language adapter;

creating or retrieving a first instance of a second core
adapter that can convert an object written in the language
of the core application programming interface into an
object written in said second scripting language; and

redirecting the returned result received by said second
instance of said first core interface to said first language
construct of said first type written in said second Script
ing language by way of said first instance of said second
core adapter.

8. The system as recited in claim 7, wherein said processor
is further programmed to execute the following operations:

calling a language construct of a second type written in a
third Scripting language, the call being made by a lan
guage construct of said second type written in said sec
ond Scripting language;

creating or retrieving a first instance of a second core
interface that handles language constructs of said second
type;

creating or retrieving an instance of a third language
adapter that can convert an object written in said second
Scripting language into an object written in the language
of the core application programming interface;

US 8,782,673 B2
13

redirecting the call to said first instance of said second core
interface by way of said instance of said third language
adapter;

creating or retrieving an instance of a thirdcore adapter that
can convert an object written in the language of the core
application programming interface into an object writ
ten in said third scripting language; and

redirecting the call received by said first instance of said
Second core interface to said language construct of said
Second type written in said third scripting language by
way of said instance of said third core adapter.

9. The system as recited in claim 8, wherein said processor
is further programmed to execute the following operations:

creating an instance of said language construct of said
Second type written in said third scripting language in
response to the call;

returning a result of said instance of said language con
struct of said second type written in said third scripting
language;

10

15

14
creating or retrieving an instance of a fourth language

adapter that can convert an object written in said third
Scripting language into an object written in the language
of the core application programming interface;

creating or retrieving a second instance of said second core
interface;

redirecting the returned result to said second instance of
said second core interface by way of said instance of said
fourth language adapter;

creating or retrieving an instance of a fourth core adapter
that can convert an object written in the language of the
core application programming interface into an object
Written in said second scripting language; and

redirecting the returned result received by said second
instance of said second core interface to said language
construct of said second type written in said second
Scripting language by way of said instance of said fourth
core adapter.

